

THIN FILMS CHARACTERIZATION (PART I)

Mihai-George Mureşan

OUTLINE

Thin film characterization

Optical characterization

• Chemical bonds

Electrical properties

THIN FILM CHARACTERIZATION

What do we want to know ?	How do we find this out ?
What does the sample look like ? •on a macroscopic scale •on a microscopic scale •on an atomic scale	 •optical microscopy •scanning electron microscopy (SEM) •transmission electron microscopy (TEM) •scanning probe microscopies (STM, AFM)
What is the structure of the sample ? •internal structure •density •microscopic and atomic scales	•X-ray diffraction (XRD) •stylus profilometry •quartz crystal monitors (QCM) •ellipsometry •low energy electron diffraction (LEED) •reflection high energy electron diffraction (RHEED)
What is the sample made of ? •elemental composition •impurities •chemical states	 Auger Electron Spectroscopy (AES) Energy Dispersive Analysis of X-rays (EDAX) X-ray Photoelectron Spectroscopy (XPS) Secondary Ion Mass Spectrometry (SIMS) Rutherford Backscattering (RBS)
What are the optical properties of the sample ? •refractive index, absorption •dielectric properties •as a function of wavelength	•ellipsometry •Spectroscopic reflectometry
What are the electrical properties of the sample? •device properties - not covered here •material properties • resistance / conductance • capacitance	•resistance - four point probe
What are the magnetic properties of the sample ? •hysteresis loops	 magneto-optical Kerr effect (MOKE) ferromagnetic resonance (FMR)
What are the mechanical properties of the sample ? •internal stress in films / substrates •friction •adhesion	•stress curvature measurements •pin on disk friction test •adhesion tests

THIN FILM CHARACTERIZATION

Characterization fundamentals

• Available probes:

- light (electromagnetic radiation)
- electrons
- ions (and nuclei and protons)
- neutrons
- neutral atoms
- "touching" the sample = forces

THIN FILM CHARACTERIZATION

Two general types of techniques

- "counting" techniques
 - How much ? or How many ?
 - intensity
 - force
 - numbers of particles
 - polarization

"spectroscopy" techniques

- Distribution by
 - energy
 - wavelength, frequency
 - o mass
 - position
- need to consider instrument sensitivity variations

OPTICAL CHARACTERIZATION

• Devices

- Photospectrometer
- Ellipsometer

Other methods: synchrotron,

OPTICAL CHARACTERIZATION

• What can be measured

- Reflectance (R)
- Transmitance (T)
- Absorbance (A)

OPTICAL CHARACTERIZATION

- Dielectric (ξ) /optical properties of materials (n,k)
- Thickness of thin films (d)
- porosity and roughness

CHEMICAL BONDS

- Chemical compounds are formed by the joining of two or more atoms. A stable compound occurs when the total energy of the combination has lower energy than the separated atoms.
- The bond is caused by the electromagnetic force attraction between opposite charges, either between electrons and nuclei, or as the result of a dipole attraction.

CHEMICAL BONDS

- Devices
 - FT-IR
 - XPS
 - Raman

Other methods: NMR. Auger, EELS

CHEMICAL BONDS - FT-IR

- It can be used to identify and study chemicals bonds by using IR to excite the structure of the sample
 - 14000-4000 cm-1 (0.8-2.5 µm wavelength) can excite vibrations
 - 4000-400 cm⁻¹ (2.5-25 µm) may be used to study the vibrations and rotational-vibrational
 - 400-10 cm⁻¹ (25-1000 µm), has low energy and may be used for rotational structure

CHEMICAL BONDS - FT-IR

• The FR-IR can measure in two modes:

CHEMICAL BONDS - XPS

 Irradiation of a material with a beam of X-rays while simultaneously measuring the kinetic energy and number of electrons that escape

CHEMICAL BONDS - XPS

• Two modes:

- Mapping (survey)
- Peak focus

C1s

282

0.5

0.4

0.3

0.2

0.1

ها 0.0 280

Intensity (a.u.)

CHEMICAL BONDS - XPS

• Samples:

- solids metals, semiconductors, insulators
- samples must be clean
- no high vapor pressure materials

• Limitations:

- does not detect H or He
- detection limit of about 1 at %
- sampling region diameter: 30 microns -10 mm
- requires ultra-high vacuum
- beam damage on some samples

X-ray Photoelectron process

- X-ray incident on material with energy = hv
- Excites electrons to be ejected from atoms
- Electrons close enough to surface (30Å) can escape from the material
- electron kinetic energy = hv binding energy

Chemical State Information

small differences in binding energy can

be detected

- allows identification of different chemical states
 - $\circ~$ elemental Si has a different binding energy than Si in SiO_2
 - C bonded to C has a different binding energy than C double bonded to O
- curve fitting of data

• Angle resolved XPS

- depth profiling of near surface region can be done by rotating the sample limited mean free path changes depth from which photoelectrons are detected
- depth profiling of surface region (100 Å) by angle resolved XPS
- depth profiling using Ar ion sputtering

CHEMICAL BONDS - RAMAN

 Raman spectroscopy is used to study vibrational, rotational, and other low-frequency modes in a system and provides a fingerprint by which the molecule can be identified

CHEMICAL BONDS - RAMAN

• Two modes:

- Mapping (survey)
- Peak focus

en 400 and 4000 cm⁻¹; on the bottom: the bands due to C=C stretching (1637 and 1649 cm⁻¹) and C=O stretching (1726 and 1760 cm⁻¹).

ELECTRICAL AND MAGNETIC PROPERTIES

• Resistivity

Conductivity (over frequency)

Magnetic characterization

RESISTIVITY

Standard measurement R=I/V

Ohmmeter indicates R_{wire} + R_{subject} + R_{wire}

RESISTIVITY

 Four-terminal sensing (Kelvin sensing or 4T) is electrical impedance measuring technique

- eliminates resistance of wires
- still have contact resistance
- need to know spacing of inner probes to convert to resistivity
- careful not to puncture film with probes

RESISTIVITY

• Van der Pauw method

- placement of measurement points is arbitrary
- more mathematical analysis
- need two measurements with contacts alternated

CONDUCTIVITY (OVER FREQUENCY)

- Measures the conductivity (in respect to frequency)
- Two modes:
 - MIM (Metal Insulator Metal)
 - MIS (Metal Insulator Semiconductor)

MAGNETIC CHARACTERIZATION

Magnetic properties of thin films can often be described by a hysteresis curve:

Magneto-optical Kerr effect (MOKE)

 ellipsometry + a magnetic field on the sample magnetic materials cause an additional rotation of the polarization of reflected light.
 sensitive to thin films

THANK YOU FOR ATTENTION