Collisions

Pavel Souček

Collision types

Cross section

Collision details

Transport processes

Elementary collision and transport processes in plasma

Pavel Souček

13. 10. 2010

Summary

Collisions
Pavel Souček

collision types
cross section
collision details
cransport processe

Collision types

Cross section

Collision details

Transport processes

• elastic collision $e + A \longrightarrow e + A$

- ► excitation
- ► de-excition (superelastic collision) $e + A^* \longrightarrow e_t + A$
- ionization by electron collision (electron has to be energetic)
- ▶ dissociative ionization $e + AB \longrightarrow 2e + A^+ + E$ $e + AB \longrightarrow e + A^+ + B^-$

▶ elastic collision e + A → e + A

excitation

$$e + A \longrightarrow e + A^*$$

- ► de-excition (superelastic collision)
- ionization by electron collision (electron has to be energetic)

$$e + A \longrightarrow 2e + A^{+}$$

dissociative ionization

$$e+AB\longrightarrow 2e+A^++B$$

 $e+AB\longrightarrow e+A^++B^-$

- elastic collision $e + A \longrightarrow e + A$
- excitation

$$e + A \longrightarrow e + A^*$$

de-excition (superelastic collision)

$$e + A^* \longrightarrow e_f + A$$

- ▶ ionization by electron collision (electron has to be
- dissociative ionization

$$e + AB \longrightarrow 2e + A^+ + B$$

$$e + AB \longrightarrow e + A^{+} + B^{-}$$

- ▶ elastic collision
 e + A → e + A
- excitation

$$e + A \longrightarrow e + A^*$$

de-excition (superelastic collision)

$$e + A^* \longrightarrow e_f + A$$

 ionization by electron collision (electron has to be energetic)

$$e + A \longrightarrow 2e + A^+$$

dissociative ionization

$$e + AB \longrightarrow 2e + A^+ + B$$

$$e + AB \longrightarrow e + A^{+} + B^{-}$$

- ▶ elastic collision
 e + A → e + A
- excitation

$$e + A \longrightarrow e + A^*$$

de-excition (superelastic collision)

$$e + A^* \longrightarrow e_f + A$$

 ionization by electron collision (electron has to be energetic)

$$e + A \longrightarrow 2e + A^+$$

dissociative ionization

$$e + AB \longrightarrow 2e + A^{+} + B$$

$$e + AB \longrightarrow e + A^{+} + B^{-}$$

Collisions

Pavel Souček

Collision types

ollision details

Transport processes

- ▶ dissociation $e + AB \longrightarrow e + A + B$
- ▶ dissociative attachment $e + AB \longrightarrow A^- + B$
- radiative attachment $e + A \longrightarrow A^- + h\nu$
- ▶ electron attachment $e + AB \longleftrightarrow AB^{-*} + M \longrightarrow AB^{-} + M$

- dissociation $e + AB \longrightarrow e + A + B$
- dissociative attachment $e + AB \longrightarrow A^- + B$
- radiative attachment $e + A \longrightarrow A^- + h\nu$
- ► electron attachment $e + AB \longleftrightarrow AB^{-*} + M \longrightarrow AB^{-} + M$

Collisions

Pavel Souček

Collision types

Collision details

Transport processes

- ▶ dissociation $e + AB \longrightarrow e + A + B$
- dissociative attachment $e + AB \longrightarrow A^- + B$
- radiative attachment $e + A \longrightarrow A^- + h\nu$
- ▶ electron attachment $e + AB \longleftrightarrow AB^{-*} + M \longrightarrow AB^{-} + N$

- ▶ dissociation $e + AB \longrightarrow e + A + B$
- ▶ dissociative attachment $e + AB \longrightarrow A^- + B$
- radiative attachment $e + A \longrightarrow A^- + h\nu$
- electron attachment

$$e + AB \longleftrightarrow AB^{-*} + M \longrightarrow AB^{-} + M$$

- elastic collision $A + B \longrightarrow A + B$
- excitation $A + B \longrightarrow A + B^*$
- ▶ ionization $A + B \longrightarrow A + B^+ + \epsilon$
- excitation transfer $A^* + B \longrightarrow A + B^*$
- ▶ de-excitation A* + B → A + B
- ▶ Penning ionization $A^* + B \longrightarrow A + B^+ + e$
- ▶ associative ionization $A + B \longrightarrow AB^+ + e$
- ► chemical reaction $AB + C \longrightarrow A + BC$

- elastic collision $A + B \longrightarrow A + B$
- excitation

$$A + B \longrightarrow A + B^*$$

$$A + B \longrightarrow A + B^+ + \epsilon$$

excitation transfer

$$A^* + B \longrightarrow A + B^*$$

- de-excitation
- Penning ionization

$$A^* + B \longrightarrow A + B^+ + \epsilon$$

- associative ionization
- chemical reaction

- elastic collision $A + B \longrightarrow A + B$
- excitation

$$A + B \longrightarrow A + B^*$$

$$A + B \longrightarrow A + B^{+} + e$$

- excitation transfer
 - $A^* + B \longrightarrow A + B^*$
- ▶ de-excitation
 A* + B → A + B
- ▶ Penning ionization $A^* + B \longrightarrow A + B^+ + e$
- ▶ associative ionization $A + B \longrightarrow AB^+ + B$
- ► chemical reaction $AB + C \longrightarrow A + BC$

- elastic collision $A + B \longrightarrow A + B$
- excitation

$$A + B \longrightarrow A + B^*$$

$$A + B \longrightarrow A + B^{+} + e$$

excitation transfer

$$A^* + B \longrightarrow A + B^*$$

de-excitation

$$A^* + B \longrightarrow A + E$$

Penning ionization

$$A^* + B \longrightarrow A + B^+ + \epsilon$$

associative ionization

$$A + B \longrightarrow AB^+ + e$$

chemical reaction

$$AB + C \longrightarrow A + BC$$

- elastic collision $A + B \longrightarrow A + B$
- excitation $A + B \longrightarrow A + B^*$
- ionization $A + B \longrightarrow A + B^{+} + e$
- excitation transfer $A^* + B \longrightarrow A + B^*$
- de-excitation $A^* + B \longrightarrow A + B$
- Penning ionization
- associative ionization
- chemical reaction

- elastic collision $A + B \longrightarrow A + B$
- excitation

$$A + B \longrightarrow A + B^*$$

$$A + B \longrightarrow A + B^{+} + e$$

excitation transfer

$$A^* + B \longrightarrow A + B^*$$

de-excitation

$$A^* + B \longrightarrow A + B$$

Penning ionization

$$A^* + B \longrightarrow A + B^+ + e$$

- associative ionization
- chemical reaction

- ▶ elastic collision
 A + B → A + B
- excitation

$$A + B \longrightarrow A + B^*$$

- ▶ ionization $A + B \longrightarrow A + B^+ + e$
- excitation transfer

$$A^* + B \longrightarrow A + B^*$$

- ▶ de-excitation A* + B → A + B
- ► Penning ionization

$$A^* + B \longrightarrow A + B^+ + e$$

- associative ionization $A + B \longrightarrow AB^+ + e$
- ► chemical reaction $AB + C \longrightarrow A + BC$

- ▶ elastic collision
 A + B → A + B
- excitation $A + B \longrightarrow A + B^*$
- ionization $A + B \longrightarrow A + B^+ + e$
- excitation transfer $A^* + B \longrightarrow A + B^*$
- ▶ de-excitation A* + B → A + B
- ▶ Penning ionization $A^* + B \longrightarrow A + B^+ + e$
- associative ionization $A + B \longrightarrow AB^+ + e$
- ► chemical reaction AB + C → A + BC

- elastic collision $A^+ + B \longrightarrow A^+ + B$
- excitation

$$A^+ + B \longrightarrow A^+ + B^*$$

$$A^+ + B \longrightarrow A^+ + B^+ + \epsilon$$

- resonant charge transfer
 - $A_f^+ + A \longrightarrow A_f + A^+$
- ▶ positive-negative ion recombination $A^+ + B^- \longrightarrow A + B^*$
- ▶ dissociative recombination $e + AB^+ \longrightarrow A + B^*$
- ► recombination in ternary collision $e + AB^+ + M \longrightarrow AB + M$
- ▶ ion-molecule reaction $A^+ + BC \longrightarrow AB^+ + C$

- ► elastic collision
 A⁺ + B → A⁺ + B
- excitation

$$A^+ + B \longrightarrow A^+ + B^*$$

$$A^+ + B \longrightarrow A^+ + B^+ + \epsilon$$

- resonant charge transfer
- positive-negative ion recombination
- ▶ dissociative recombination $e + AB^+ \longrightarrow A + B^*$
- ► recombination in ternary collision $e + AB^+ + M \longrightarrow AB + M$
- ▶ ion-molecule reaction $A^+ + BC \longrightarrow AB^+ + C$

elastic collision

$$A^+ + B \longrightarrow A^+ + B$$

excitation

$$A^+ + B \longrightarrow A^+ + B^*$$

$$A^+ + B \longrightarrow A^+ + B^+ + e$$

- resonant charge transfer $A_{+}^{+} + A \longrightarrow A_{+} + A^{+}$
- ▶ positive-negative ion recombination $A^+ + B^- \longrightarrow A + B^*$
- ▶ dissociative recombination $e + AB^+ \longrightarrow A + B^*$
- ► recombination in ternary collision $e + AB^+ + M \longrightarrow AB + M$
- ▶ ion-molecule reaction $A^+ + BC \longrightarrow AB^+ + C$

- elastic collision $A^+ + B \longrightarrow A^+ + B$
- excitation

$$A^+ + B \longrightarrow A^+ + B^*$$

$$A^+ + B \longrightarrow A^+ + B^+ + e$$

resonant charge transfer

$$A_f^+ + A \longrightarrow A_f^- + A^+$$

- positive-negative ion recombination
- ► dissociative recombination
- ► recombination in ternary collision $e + AB^+ + M \longrightarrow AB + M$
- ▶ ion-molecule reaction $A^+ + BC \longrightarrow AB^+ + C$

- ► elastic collision
 A⁺ + B → A⁺ + B
- excitation

$$A^+ + B \longrightarrow A^+ + B^*$$

$$A^+ + B \longrightarrow A^+ + B^+ + e$$

resonant charge transfer

$$A_f^+ + A \longrightarrow A_f + A^+$$

positive-negative ion recombination

$$A^+ + B^- \longrightarrow A + B^*$$

- dissociative recombination
 AB+ A + B*
- ► recombination in ternary collision $e + AB^+ + M \longrightarrow AB + M$
- ▶ ion-molecule reaction $A^+ + BC \longrightarrow AB^+ + C$

- elastic collision $A^+ + B \longrightarrow A^+ + B$
- excitation

$$A^+ + B \longrightarrow A^+ + B^*$$

$$A^+ + B \longrightarrow A^+ + B^+ + e$$

resonant charge transfer

$$A_f^+ + A \longrightarrow A_f + A^+$$

positive-negative ion recombination

$$A^+ + B^- \longrightarrow A + B^*$$

► dissociative recombination

$$e + AB^+ \longrightarrow A + B^*$$

- recombination in ternary collision $e + AB^+ + M \longrightarrow AB + M$
- ▶ ion-molecule reaction

$$A^+ + BC \longrightarrow AB^+ + C$$

- elastic collision $A^+ + B \longrightarrow A^+ + B$
- excitation $A^+ + B \longrightarrow A^+ + B^*$
- ▶ ionization $A^+ + B \longrightarrow A^+ + B^+ + e$
- resonant charge transfer
 A_f + A → A_f + A⁺
- ▶ positive-negative ion recombination $A^+ + B^- \longrightarrow A + B^*$
- ▶ dissociative recombination $e + AB^+ \longrightarrow A + B^*$
- ► recombination in ternary collision $e + AB^+ + M \longrightarrow AB + M$
- ▶ ion-molecule reaction $A^+ + BC \longrightarrow AB^+ + C$

elastic collision $A^+ + B \longrightarrow A^+ + B$

$$A^+ + B \longrightarrow A^+ + B^+ + e$$

resonant charge transfer

$$A_f^+ + A \longrightarrow A_f + A^+$$

positive-negative ion recombination

$$A^+ + B^- \longrightarrow A + B^*$$

dissociative recombination $e + AB^+ \longrightarrow A + B^*$

$$e + AB^+ + M \longrightarrow AB + M$$

ion-molecule reaction

$$A^+ + BC \longrightarrow AB^+ + C$$

absorption h_V + A → A*

- ► emission
- ▶ stimulated emission $h\nu + A^* \longrightarrow A + 2h\nu$
- ▶ photo-ionization $h\nu + A \longrightarrow A^* + e$
- ▶ dissociation $h\nu + AB \longrightarrow A + B$

- absorption h_V + A → A*
- emission

$$A^* \longrightarrow A + h\nu$$

- ▶ stimulated emission $h\nu + A^* \longrightarrow A + 2h\nu$
- ▶ photo-ionization $h\nu + A \longrightarrow A^* + \epsilon$
- ▶ dissociation $h\nu + AB \longrightarrow A + B$

- absorption h_V + A → A*
- emission $A^* \longrightarrow A + h\nu$
- stimulated emission
- $h\nu + A^* \longrightarrow A + 2h\nu$
- ▶ photo-ionization $h\nu + A \longrightarrow A^* + e$
- ▶ dissociation $h\nu + AB \longrightarrow A + B$

- ▶ absorption $h\nu + A \longrightarrow A^*$
- emission $A^* \longrightarrow A + h\nu$
- ▶ stimulated emission $h\nu + A^* \longrightarrow A + 2h\nu$
- ▶ photo-ionization $h\nu + A \longrightarrow A^* + e$
- ► dissociation $h\nu + AB \longrightarrow A + B$

- absorption h_V + A → A*
- emission $A^* \longrightarrow A + h\nu$
- stimulated emission $h\nu + A^* \longrightarrow A + 2h\nu$
- ▶ photo-ionization
- $h\nu + A \longrightarrow A^* + e$ dissociation
- $h\nu + AB \longrightarrow A + B$

Collision types

Cross section

Collision details

Cross Section I

• (microscopic) cross section — σ [m²]

- expresses the likelihood of interaction of incoming particle with target particle
- when particles in a beam are thrown against a foil made of a certain substance, the cross section σ is a hypothetical area measure around the target particles of the substance (usually its atoms) that represents a surface
- if a particle of the beam crosses this surface, there will be some kind of interaction
- for hard sphere model $\sigma = \pi \cdot R^2$, where $R = r_1 + r_2$

Cross section

Differential cross section

- $ightharpoonup \frac{d\sigma}{d\Omega}, \sigma_d \text{ [m}^2\text{srad}^{-1}\text{]}$
- expresses the likelihood of scattering of particles under specific angle

Macroscopic cross section $\Sigma = n\sigma$

Mean free path (the distance over which the uncollided flux decreases to 1/e of its initial value) $\lambda = \frac{1}{\rho\sigma}$

Collision frequency $\nu = n\sigma v$

Cross section 9/

Differential cross section

- $2\pi \int_{0}^{\pi} (1-\cos\theta)^k \frac{d\sigma(\theta)}{d\Omega} \sin\theta d\theta$
- $\triangleright \sigma^{(1)}$... cross section for momentum transfer $\equiv \sigma_m$
- $ightharpoonup \sigma^{(2)}$... cross section for energy transfer $\equiv \sigma_F$

^aLiebermann, M.A., Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing

Cross section

Transport processes

- ► Franck-Condon principle
- interaction time $\sim 10^{-16} - 10^{-15}$ s
- vibration period $\sim 10^{-14} - 10^{-13}$ s
- radiation time $\sim 10^{-9} - 10^{-8} s$

Collisions

Pavel Souček

Collision details

Collisions

Pavel Souček

rnee eartion

Collision details

Transport processes

- ▶ rotational states ~ 0.01 eV
- ▶ vibrational states ~ 0.1 eV
- ▶ electronic states ~ 1 eV
- ▶ an electron can transfer only $\frac{2m}{M}E_e$, which is low energy higher vibrational states through some unstable AB^*

Collision details 12/1

Collision types
Cross section

Collision details
Transport processes

- resonant charge transfer $A_f^+ + A \longrightarrow A_f + A^+$
- nonresonant charge transfer

$$A^+ + B \longrightarrow A + B^+$$

- separated N⁺ + O level is 0.92 eV higher than the N + O⁺
- at the crossing separation
 R_x a change of state
 corresponding to a transfer
 of charge can occur

^aLiebermann, M.A., Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing

Collision details 13/

3 types:

1. unimolecular

$$A \longrightarrow products$$

2. bimolecular

$$A + B \longrightarrow products$$

3. termolecular

$$A + B + C \longrightarrow \text{products}$$

reaction rate $R = \frac{1}{\alpha_j} \frac{dn_j}{dt} \alpha_j$... stoichiometric coefficient, n_j ... volume density [m⁻³]

Collision details

Collisions

Pavel Souček

Collision types

Collision details

 $A \longrightarrow \text{products}$ $R = -\frac{dn_A}{dt} = k_1 n_a$

 k_1 ... first order rate constant $[k_1] = s^{-1}$

► $A + A \longrightarrow \text{products}$ $R = -\frac{1}{2} \frac{dn_A}{dt} = k_2 n_a^2$ $k_2 \dots \text{ second order rate constant } [k_2] = cm^2$

► $A + B \longrightarrow \text{products}$ $R = -\frac{dn_A}{dt} = -\frac{dn_B}{dt} = k_2 n_a n_b$

► $A + A + A \longrightarrow \text{products}$ $R = -\frac{1}{3} \frac{dn_A}{dt} = k_2 n_a^3$ $k_3 \dots \text{third order rate constant } [k_3] = cm^6 s^{-1}$

 $A + A + B \longrightarrow \text{products}$ $R = -\frac{1}{2} \frac{dn_A}{dt} = -\frac{dn_B}{dt} = k_3 n_a^2 n_b$

► $A + B + C \longrightarrow \text{products}$ $R = -\frac{dn_A}{dt} = -\frac{dn_B}{dt} = -\frac{dn_C}{dt} = k_3 n_a n_b n_c$

Pavel Souček

Collision types

Collision details

 $ightharpoonup A \longrightarrow \text{products}$

 $R = -\frac{dn_A}{dt} = k_1 n_a$

 k_1 ... first order rate constant $[k_1] = s^{-1}$

 \rightarrow A + A \longrightarrow products $R = -\frac{1}{2} \frac{dn_A}{dt} = k_2 n_A^2$ k_2 ... second order rate constant $[k_2] = cm^3 s^{-1}$

 \rightarrow A + B \longrightarrow products

 $A + A + A \longrightarrow \text{products}$

 \triangleright $A + A + B \longrightarrow \text{products}$

 $A + B + C \longrightarrow \text{products}$

 \rightarrow A \longrightarrow products

$$R = -\frac{dn_A}{dt} = k_1 n_a$$

 k_1 ... first order rate constant $[k_1] = s^{-1}$

► $A + A \longrightarrow \text{products}$ $R = -\frac{1}{2} \frac{dn_A}{dt} = k_2 n_a^2$ k_2 ... second order rate constant $[k_2] = cm^3 s^{-1}$

► $A + B \longrightarrow \text{products}$ $R = -\frac{dn_A}{dt} = -\frac{dn_B}{dt} = k_2 n_a n_b$

► $A + A + A \longrightarrow \text{products}$ $R = -\frac{1}{3} \frac{dn_A}{dt} = k_2 n_a^2$

 k_3 ... third order rate constant $[k_3] = cm^6s^{-1}$

 $A + A + B \longrightarrow \text{products}$ $R = -\frac{1}{2} \frac{dn_A}{dt} = -\frac{dn_B}{dt} = k_3 n_a^2 n_b$

►
$$A + B + C \longrightarrow \text{products}$$

 $R = -\frac{dn_A}{dt} = -\frac{dn_B}{dt} = -\frac{dn_C}{dt} = k_3 n_a n_b n_c$

Collision details

$$A \longrightarrow \text{products}$$
 $B = -\frac{dn}{dt}$

$$R = -\frac{dn_A}{dt} = k_1 n_a$$

 k_1 ... first order rate constant $[k_1] = s^{-1}$

►
$$A + A \longrightarrow \text{products}$$

 $R = -\frac{1}{2} \frac{dn_A}{dt} = k_2 n_a^2$
 k_2 ... second order rate constant $[k_2] = cm^3 s^{-1}$

►
$$A + B \longrightarrow \text{products}$$

 $R = -\frac{dn_A}{dt} = -\frac{dn_B}{dt} = k_2 n_a n_b$

►
$$A + A + A \longrightarrow \text{products}$$

 $R = -\frac{1}{3} \frac{dn_A}{dt} = k_2 n_a^3$
 $k_3 \dots \text{third order rate constant } [k_3] = cm^6 s^{-1}$

►
$$A + A + B \longrightarrow \text{products}$$

 $R = -\frac{1}{2} \frac{dn_A}{dt} = -\frac{dn_B}{dt} = k_3 n_a^2 n_b$

►
$$A + B + C \longrightarrow \text{products}$$

 $R = -\frac{dn_A}{dt} = -\frac{dn_B}{dt} = -\frac{dn_C}{dt} = k_3 n_a n_b n_C$

 $A \longrightarrow \text{products}$ $B = -\frac{dn}{2}$

 $R = -\frac{dn_A}{dt} = k_1 n_a$ k_1 ... first order rate constant $[k_1] = s^{-1}$

- ► $A + A \longrightarrow \text{products}$ $R = -\frac{1}{2} \frac{dn_A}{dt} = k_2 n_a^2$ k_2 ... second order rate constant $[k_2] = cm^3 s^{-1}$
- ► $A + B \longrightarrow \text{products}$ $R = -\frac{dn_A}{dt} = -\frac{dn_B}{dt} = k_2 n_a n_b$
- ► $A + A + A \longrightarrow \text{products}$ $R = -\frac{1}{3} \frac{dn_A}{dt} = k_2 n_a^3$ $k_3 \dots \text{third order rate constant } [k_3] = cm^6 s^{-1}$
- $A + A + B \longrightarrow \text{products}$ $R = -\frac{1}{2} \frac{dn_A}{dt} = -\frac{dn_B}{dt} = k_3 n_a^2 n_b$
- ► $A + B + C \longrightarrow \text{products}$ $R = -\frac{dn_A}{dt} = -\frac{dn_B}{dt} = -\frac{dn_C}{dt} = k_3 n_a n_b n_c$

►
$$A \longrightarrow \text{products}$$

$$R = -\frac{dn_A}{dt} = k_1 n_a$$

$$k_1 \dots \text{ first order rate constant } [k_1] = s^{-1}$$

►
$$A + A \longrightarrow \text{products}$$

 $R = -\frac{1}{2} \frac{dn_A}{dt} = k_2 n_a^2$
 k_2 ... second order rate constant $[k_2] = cm^3 s^{-1}$

►
$$A + B \longrightarrow \text{products}$$

 $R = -\frac{dn_A}{dt} = -\frac{dn_B}{dt} = k_2 n_a n_b$

►
$$A + A + A \longrightarrow \text{products}$$

 $R = -\frac{1}{3} \frac{dn_A}{dt} = k_2 n_a^3$
 $k_3 \dots \text{third order rate constant } [k_3] = cm^6 s^{-1}$

►
$$A + A + B \longrightarrow \text{products}$$

 $R = -\frac{1}{2} \frac{dn_A}{dt} = -\frac{dn_B}{dt} = k_3 n_a^2 n_b$

►
$$A + B + C \longrightarrow \text{products}$$

 $R = -\frac{dn_A}{dt} = -\frac{dn_B}{dt} = -\frac{dn_C}{dt} = k_3 n_a n_b n_c$

- Fick's law $\vec{j} = -D\nabla n$
- $ightharpoonup \vec{j}$... flux, D ... diffusion constant, n ... density
- $-\frac{dN}{dt} = -\int_{\vec{S}} \vec{j} d\vec{S}$

- ▶ self-diffusion constant D = $\frac{1}{3}v_a\lambda$ [m^2s^{-1}], where v_a is the mean free path and λ is the collision frequency

- mutual diffusion
- $ightharpoonup D_{ab} = D_{ba} = D_a \frac{n_a}{n_a + n_b} + D_b \frac{n_b}{n_a + n_b} [m^2 s^{-1}]$

Self-diffusion constant

gas	_	He	_	_	_	
$D[10^{-4} m^2 s^{-1}]$	1.27	1.25	0.14	0.18	0.1	0.025

Transport processes 17/

Mutual diffusion constant

gas	$D_{ab}[10^{-4} m^2 s^{-1}]$	$D_{ab}[10^{-4} m^2 s^{-1}]$		
	in air	in H ₂		
H ₂	0.66	1.27		
He	0.57	1.25		
air	0.18	1.66		
CO	0.175	0.64		
CO ₂	0.135	0.54		

Transport processes 18/1

Collision details

Transport processes

Ambipolar diffusion

- ▶ in electric field; electrons and ions both taken into account
- in the steady state we make the congruence assumption that the flux of electrons and ions out of any region must be equal, such that charge does not build up
- since the electrons are lighter, and would tend to flow out faster (in an unmagnetized plasma), an electric field must spring up to maintain the local flux balance
- a few more electrons than ions initially leave the plasma region to set up a charge imbalance and consequently an electric field
- ▶ $\frac{\partial n}{\partial t}$ − D_a Δn = G − L, with G and L the volume source and sink
- in a weakly ionized discharge and using the Einstein relation $D_a \approx D_i \left(1 + \frac{T_e}{T_i}\right)$
- ambipolar diffusion is tied to the slower species, in this case the ions
- ▶ in the usual case in weakly ionized plasmas, in which $T_e \gg T_i$, the ions and electrons both diffuse at a rate that greatly exceeds the ion free diffusion rate

Transport processes 19/