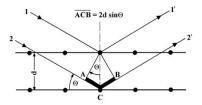
# XRD and Raman spectroscopy F8900 Študentský seminár

Peter Zelina petko@physics.muni.cz

Department of Physical Electronics Faculty of Science Masaryk University

May 4<sup>th</sup>, 2011

# Outline




- Introduction
- Principle
- 2 Raman spectroscopy
  - Theory
  - Principle



# What is XRD?

- X-Ray Diffraction = X-rays diffracted on lattice of the matter
- constructive interference (Braggs condition):



$$2d\sin\theta = n\lambda$$
  
$$2\frac{a}{\sqrt{h^2 + k^2 + l^2}}\sin\theta = \lambda$$

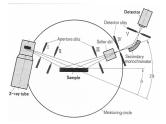
### When do I use XRD?

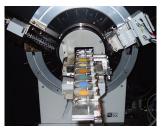
- qualitative and quantitative analysis of crystalline sample
- distinguish between mixture and compound
- size of particles (powder XRD, size < 100 nm)

Introduction Principle

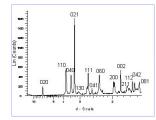
### How mathematics works...

$$F(\vec{Q}) = \sum_{s} f_{s}(Q) \underbrace{\exp(-i\vec{Q} \cdot \vec{r}_{s})}^{\text{structure factor}}$$
(1)


 $\vec{r_s}$  direct lattice vector,  $\vec{Q}$  reciprocal lattice vector  $\Rightarrow$  condition for Miller indeces h, k,  $l \Rightarrow$  angle of incidence  $\theta$ 


| م<br>hkl   | -Fe<br>2θ[°] | Fe<br><i>hkl</i> | <sup>3</sup> 0 <sub>4</sub><br>2θ[°] | 17,500                                | Scherer formula:                          |
|------------|--------------|------------------|--------------------------------------|---------------------------------------|-------------------------------------------|
| 110<br>200 | 52<br>77     | 111<br>220       | 21<br>35                             | - 12,500                              | $\tau = \frac{K\lambda}{\beta\cos\theta}$ |
| 211<br>220 | 100<br>124   | 311<br>400       | 41<br>50                             | 7,500                                 | $\beta = FWHM$                            |
| 310        | 161          | 511<br>440       | 67<br>74                             |                                       | K - shape factor                          |
|            |              |                  |                                      | - 0 20 40 60 80 100 120 140<br>20 [°] |                                           |

LP#14a -  $\alpha$ -Fe/Fe<sub>3</sub>O<sub>4</sub>: 44:56; 10 nm, 4 nm


Introduction Principle

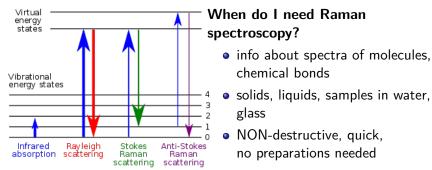
## ...and physics





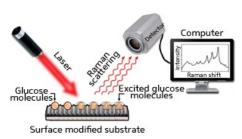
- source of X-rays: synchrotron, bremsstrahlung (Mo, Cu, Co, Fe, Cr)
- $\lambda \approx 0.06 \text{ nm} (Mo) 0.23 \text{ nm} (Cr)$
- detector: CCD, photopaper




 $MoO_3$  nanowires, www.nanotul.com



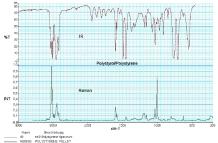
### Raman spectroscopy - Basic theory


- inelastic scattering of monochromatic light
- excitations to virtual energy states
- source: laser ( $\lambda_0$ ) near UV near IR

$$\Delta\omega = \left(\frac{1}{\lambda_0} - \frac{1}{\lambda}\right) \tag{2}$$



Theory Principle


# Principle



- light irradiates the sample
- scattered light is detected
- wavelengths  $\lambda \approx \lambda_0$  are filtered

### Applications

- drugs, explosives detection
- low energy phonons
- complement to IR spectroscopy



## To sum up

We use ...

XRD if...

- the sample is (poly)crystalline!
- qualitative, quantitative analysis
- nanopowder size of particles

#### Raman spectroscopy if...

- info about rotational, vibrational spectra, chemical bonds, phonon and magnon excitations
- complement to IR spectroscopy

Method is useless if ...

- the sample is NOT crystalline
- very small objects ( $\approx \lambda$ )
- similar lattice parameters

- laser changes structure of the sample, heats it
- the sample is metal or alloy

## To sum up

We use ...

XRD if...

- the sample is (poly)crystalline!
- qualitative, quantitative analysis
- nanopowder size of particles

#### Raman spectroscopy if...

- info about rotational, vibrational spectra, chemical bonds, phonon and magnon excitations
- complement to IR spectroscopy

Method is useless if ...

- the sample is NOT crystalline
- very small objects ( $\approx \lambda$ )
- similar lattice parameters

- laser changes structure of the sample, heats it
- the sample is metal or alloy

#### Thank you for your attention!