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We want to prove the following theorem concerning a real semisimple Lie

group G and its Lie algebra g.

Theorem 1 (Weyl). The Killing form of the semisimple Lie algebra g is negative

definite if and only if the corresponding Lie group G is compact as a manifold.

Let us fix conventions. The Killing form on a Lie algebra is defined as

〈X ,Y 〉 =Tr(ad(X )◦ad(Y )).

Proof. "⇐". The proof of the converse part is fairly easy if one assumes the possi-

bility of integration on the Lie group G. 1 Out of any scalar product on g one may

then construct a G-invariant scalar product (·, ·) by averaging over the group (it

must be the Killing form up to a positive factor). With respect to this scalar prod-

uct the linear map ad(X ) : g→g is antisymmetric; we have (Ad(g)X ,Ad(g)Y ) =

(X ,Y ) and so after differentiation (ad(Z)X ,Y )+ (X ,ad(Z)Y ) = 0. The eigenval-

ues of an antisymmetric operator A are purely imaginary. Let Au = λu. Then

λ(u,u) = (u, Au) = (ATu,u) = −(Au,u) = −λ∗(u,u). The zero eigenvalues are ex-

cluded since for semisimple g ad is a bijection. Thus a composition of two such

operators has negative eigenvalues and the scalar product is always negative for

nonzero elements of g.

"⇒". For the other direction we shall use some Riemannian geometry. We

shall construct a G-bi-invariant Riemann metric ρ on G by translating the nega-

tive of the Killing form on g= TeG to TgG as follows

ρ(ξ,η)(g) :=−〈TgLg−1ξ,TgLg−1η〉.

We can easily compute the curvatures of ρ. First we shall use the Koszul formula

for a Riemann metric ρ and the Levi-Civita connection ∇.

2ρ(∇X Y ,Z) = Xρ(Y ,Z)+Yρ(X ,Z)−Zρ(X ,Y )+

+ρ([X ,Y ],Z)−ρ([X ,Z],Y )−ρ([Y , Z], X ).

For left invariant vector fields X ,Y ,Z on G and a bi-invariant metric ρ the for-

mula simplifies: the first three summands obviously vanish and the last two

cancel. We are left with

2ρ(∇X Y ,Z) = ρ(Z,[X ,Y ]),

1 For a compact Lie group one proceeds as follows: Out of the left-invariant Maurer-Cartan form ω

one may construct a top-dimensional form ν by using the wedge product. The form ν is a left invariant

volume element on G (which is actually also right invariant for compact G).
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i.e.

∇X Y =
1

2
[X ,Y ].

The geodesics are obviously the integral curves of left-invariant vector fields, i.e.

one parameter subroups, in particular, G is complete. Let us compute the Rie-

mann curvature

R(X ,Y )Z :=∇X∇Y Z−∇Y∇X Z−∇[X ,Y ]Z =

=
1

4
([X ,[Y ,Z]]− [Y ,[X ,Z]]−2[[X ,Y ],Z]) =−

1

4
[[X ,Y ],Z],

where the last step comes from using the Jacobi identity. We can also rewrite

this as

R(X ,Y )Z =
1

4
ad(Z)◦ad(X )Y .

Now let us compute the Ricci curvature

Ricci(X ,Y ) := Tr(Z 7→ R(X ,Z)Y ) =
1

4
ρ(X ,Y ).

We see that it is a multiple of the Killing form. We also see that Ricci(X , X ) =

1/4ρ(X , X ) ≥ (n−1)/r2ρ(X , X ) > 0, so the prerequisites of the Bonnet-Myers theo-

rem are satisfied. We see that G is bounded by r and therefore compact. 2 ■

Theorem 2 (Bonnet, Myers). Let (M, g) be a complete Riemann manifold, dim M =

n. Suppose that the Ricci curvature of M satisfies

Ricci(X , X )(p) ≥
n−1

r2
g(X , X ) > 0

for all p ∈ M and all X ∈ TpM. Then M is compact and the geodesic distances of

the points of M are bounded by πr from above.

Proof loosely following do Carmo. Let p, q ∈ M be arbitrary. Since M is complete

there exists (Hopf-Rinow theorem) a minimizing geodesic segment γ : [0,1]→M

such that γ(0)= p and γ(1)= q. It suffices to show, that

ℓ= ℓ(γ) :=

∫1

0
g(γ′,γ′)1/2 d t≤πr.

Then, because M is bounded and complete it is also compact. We will proceed by

contradiction. Assume that ℓ(γ)> πr. Set e1 = γ′/ℓ and extend it to an orthonor-

mal basis (e1, . . . , en) of Tγ(t)M. Define the vector fields v j along γ by

v j = sin(πt)e j , j ∈ {2, . . . ,n}.

2 We remind the reader of the form of ρ(X , X ) for compact matrix groups: for su(n) it is −2nTr(X2),

for so(n) it is (2−n)Tr(X2) and for sp(2n) it is −2(n+1)Tr(X2).
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Note that v j(0) = v j(1) = 0 so v j ’s induce proper variations of γ namely δ(s, t).

Concretely, we have

δ j(0, t) = γ(t),
∂δ j

∂s
= v j .

Let us denote their energies by

E j(s) =
1

2

∫1

0
g(δ′,δ′)d t.

For the first and second variation we have

E′
j(0)=−

∫1

0
g(v j ,

D

d t

dγ

d t
)d t= 0

E′′
j (0)=−

∫1

0
g(v j ,

D2v j

d t2
+R(

dγ

d t
,v j)

dγ

d t
)d t.

Let us compute the second variation explicitly

E′′
j (0)=−

∫1

0
g(sin(πt)e j ,(sin(πt)e j)

′′
+ℓ2R(e1,sin(πt)e j)e1)d t=

=

∫1

0
sin2(πt)(π2

−ℓ2K(e1, e j))d t,

where K(e1, e j) is the sectional curvature in the plane spanned by e1 and e j .

Summing the previous expression through j = 2 . . . n we get

n
∑

j=2

E′′
j (s) =

∫1

0
((n−1)π2

−ℓ2 Ricci(e1, e1)(γ(t)))sin2(πt)d t

and since Ricci(e1, e1)≥ (n−1)/r2 we get

n
∑

j=2

E′′
j (s) ≤

∫1

0
(n−1)(π2

−
ℓ2

r2
)sin2(πt)d t< 0.

This produces a contradiction since γ is a minimising geodesic. ■
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