Weyl's Theorem

Michael Krbek

We want to prove the following theorem concerning a real semisimple Lie group G and its Lie algebra \mathfrak{g}.

Theorem 1 (Weyl). The Killing form of the semisimple Lie algebra \mathfrak{g} is negative definite if and only if the corresponding Lie group G is compact as a manifold.

Let us fix conventions. The Killing form on a Lie algebra is defined as

$$
\langle X, Y\rangle=\operatorname{Tr}(\operatorname{ad}(X) \circ \operatorname{ad}(Y)) .
$$

Proof. " \Leftarrow ". The proof of the converse part is fairly easy if one assumes the possibility of integration on the Lie group G. 1 Out of any scalar product on \mathfrak{g} one may then construct a G-invariant scalar product (\cdot, \cdot) by averaging over the group (it must be the Killing form up to a positive factor). With respect to this scalar product the linear map $\operatorname{ad}(X): \mathfrak{g} \rightarrow \mathfrak{g}$ is antisymmetric; we have $(\operatorname{Ad}(g) X, \operatorname{Ad}(g) Y)=$ (X, Y) and so after differentiation $(\operatorname{ad}(Z) X, Y)+(X, \operatorname{ad}(Z) Y)=0$. The eigenvalues of an antisymmetric operator A are purely imaginary. Let $A u=\lambda u$. Then $\lambda(u, u)=(u, A u)=\left(A^{\mathrm{T}} u, u\right)=-(A u, u)=-\lambda^{*}(u, u)$. The zero eigenvalues are excluded since for semisimple \mathfrak{g} ad is a bijection. Thus a composition of two such operators has negative eigenvalues and the scalar product is always negative for nonzero elements of \mathfrak{g}.
$" \Rightarrow$ ". For the other direction we shall use some Riemannian geometry. We shall construct a G-bi-invariant Riemann metric ρ on G by translating the negative of the Killing form on $\mathfrak{g}=T_{e} G$ to $T_{g} G$ as follows

$$
\rho(\xi, \eta)(g):=-\left\langle T_{g} L_{g^{-1}} \xi, T_{g} L_{g^{-1}} \eta\right\rangle .
$$

We can easily compute the curvatures of ρ. First we shall use the Koszul formula for a Riemann metric ρ and the Levi-Civita connection ∇.

$$
\begin{aligned}
2 \rho\left(\nabla_{X} Y, Z\right)=X \rho(Y, Z)+Y \rho(X, Z)- & Z \rho(X, Y)+ \\
& +\rho([X, Y], Z)-\rho([X, Z], Y)-\rho([Y, Z], X) .
\end{aligned}
$$

For left invariant vector fields X, Y, Z on G and a bi-invariant metric ρ the formula simplifies: the first three summands obviously vanish and the last two cancel. We are left with

$$
2 \rho\left(\nabla_{X} Y, Z\right)=\rho(Z,[X, Y])
$$

[^0]i.e.
$$
\nabla_{X} Y=\frac{1}{2}[X, Y]
$$

The geodesics are obviously the integral curves of left-invariant vector fields, i.e. one parameter subroups, in particular, G is complete. Let us compute the Riemann curvature

$$
\begin{aligned}
& R(X, Y) Z:=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z= \\
& \quad=\frac{1}{4}([X,[Y, Z]]-[Y,[X, Z]]-2[[X, Y], Z])=-\frac{1}{4}[[X, Y], Z],
\end{aligned}
$$

where the last step comes from using the Jacobi identity. We can also rewrite this as

$$
R(X, Y) Z=\frac{1}{4} \operatorname{ad}(Z) \circ \operatorname{ad}(X) Y
$$

Now let us compute the Ricci curvature

$$
\operatorname{Ricci}(X, Y):=\operatorname{Tr}(Z \mapsto R(X, Z) Y)=\frac{1}{4} \rho(X, Y)
$$

We see that it is a multiple of the Killing form. We also see that $\operatorname{Ricci}(X, X)=$ $1 / 4 \rho(X, X) \geq(n-1) / r^{2} \rho(X, X)>0$, so the prerequisites of the Bonnet-Myers theorem are satisfied. We see that G is bounded by r and therefore compact. ${ }^{2}$

Theorem 2 (Bonnet, Myers). Let (M, g) be a complete Riemann manifold, $\operatorname{dim} M=$ n. Suppose that the Ricci curvature of M satisfies

$$
\operatorname{Ricci}(X, X)(p) \geq \frac{n-1}{r^{2}} g(X, X)>0
$$

for all $p \in M$ and all $X \in T_{p} M$. Then M is compact and the geodesic distances of the points of M are bounded by πr from above.

Proof loosely following do Carmo. Let $p, q \in M$ be arbitrary. Since M is complete there exists (Hopf-Rinow theorem) a minimizing geodesic segment $\gamma:[0,1] \rightarrow M$ such that $\gamma(0)=p$ and $\gamma(1)=q$. It suffices to show, that

$$
\ell=\ell(\gamma):=\int_{0}^{1} g\left(\gamma^{\prime}, \gamma^{\prime}\right)^{1 / 2} \mathrm{~d} t \leq \pi r
$$

Then, because M is bounded and complete it is also compact. We will proceed by contradiction. Assume that $\ell(\gamma)>\pi r$. Set $e_{1}=\gamma^{\prime} / \ell$ and extend it to an orthonormal basis $\left(e_{1}, \ldots, e_{n}\right)$ of $T_{\gamma(t)} M$. Define the vector fields v_{j} along γ by

$$
v_{j}=\sin (\pi t) e_{j}, \quad j \in\{2, \ldots, n\}
$$

[^1]Note that $v_{j}(0)=v_{j}(1)=0$ so v_{j} 's induce proper variations of γ namely $\delta(s, t)$. Concretely, we have

$$
\delta_{j}(0, t)=\gamma(t), \quad \frac{\partial \delta_{j}}{\partial s}=v_{j}
$$

Let us denote their energies by

$$
E_{j}(s)=\frac{1}{2} \int_{0}^{1} g\left(\delta^{\prime}, \delta^{\prime}\right) \mathrm{d} t
$$

For the first and second variation we have

$$
\begin{aligned}
& E_{j}^{\prime}(0)=-\int_{0}^{1} g\left(v_{j}, \frac{D}{\mathrm{~d} t} \frac{\mathrm{~d} \gamma}{\mathrm{~d} t}\right) \mathrm{d} t=0 \\
& E_{j}^{\prime \prime}(0)=-\int_{0}^{1} g\left(v_{j}, \frac{D^{2} v_{j}}{\mathrm{~d} t^{2}}+R\left(\frac{\mathrm{~d} \gamma}{\mathrm{~d} t}, v_{j}\right) \frac{\mathrm{d} \gamma}{\mathrm{~d} t}\right) \mathrm{d} t
\end{aligned}
$$

Let us compute the second variation explicitly

$$
\begin{aligned}
E_{j}^{\prime \prime}(0)=-\int_{0}^{1} g\left(\sin (\pi t) e_{j},\left(\sin (\pi t) e_{j}\right)^{\prime \prime}+\ell^{2} R(\right. & \left.\left.e_{1}, \sin (\pi t) e_{j}\right) e_{1}\right) \mathrm{d} t= \\
& =\int_{0}^{1} \sin ^{2}(\pi t)\left(\pi^{2}-\ell^{2} K\left(e_{1}, e_{j}\right)\right) \mathrm{d} t
\end{aligned}
$$

where $K\left(e_{1}, e_{j}\right)$ is the sectional curvature in the plane spanned by e_{1} and e_{j}. Summing the previous expression through $j=2 \ldots n$ we get

$$
\sum_{j=2}^{n} E_{j}^{\prime \prime}(s)=\int_{0}^{1}\left((n-1) \pi^{2}-\ell^{2} \operatorname{Ricci}\left(e_{1}, e_{1}\right)(\gamma(t))\right) \sin ^{2}(\pi t) \mathrm{d} t
$$

and since $\operatorname{Ricci}\left(e_{1}, e_{1}\right) \geq(n-1) / r^{2}$ we get

$$
\sum_{j=2}^{n} E_{j}^{\prime \prime}(s) \leq \int_{0}^{1}(n-1)\left(\pi^{2}-\frac{\ell^{2}}{r^{2}}\right) \sin ^{2}(\pi t) \mathrm{d} t<0
$$

This produces a contradiction since γ is a minimising geodesic.

[^0]: ${ }^{1}$ For a compact Lie group one proceeds as follows: Out of the left-invariant Maurer-Cartan form ω one may construct a top-dimensional form v by using the wedge product. The form v is a left invariant volume element on G (which is actually also right invariant for compact G).

[^1]: ${ }^{2}$ We remind the reader of the form of $\rho(X, X)$ for compact matrix groups: for $\mathfrak{s u}(n)$ it is $-2 n \operatorname{Tr}\left(X^{2}\right)$, for $\mathfrak{s o}(n)$ it is $(2-n) \operatorname{Tr}\left(X^{2}\right)$ and for $\mathfrak{s p}(2 n)$ it is $-2(n+1) \operatorname{Tr}\left(X^{2}\right)$.

