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1. Differential operators. Let τ : W →X and ρ : Z→X be two vector bundles
over the same base X and let Γ(W ), resp. Γ(Z) denote the set of smooth local sections
of W , resp. Z. A mapping D : Γ(W )→Γ(Z) is said to be a differential operator, if
there exist an integer r ≥ 0 and a morphism of vector bundles Dr : JrW →Z over the
identity idX such that for every section γ ∈ Γ(W )

D(γ) = Dr ◦ Jrγ.

The minimal such integer r is called the order of the differential operator D.
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2. Symbol of a differential operator. If τ : W →X is vector bundle, then so is the
prolongation JrW →X, in any case the bundle JrW → Jr−1W is affine, the underlying
vector bundle being (πr,r−1)∗VW ⊗ SrT ∗X, VW being the vertical bundle (in the case
of vector bundles, it can be identified with W itself).

(πr,r−1)∗VW ⊗ SrT ∗X //

��

VW ⊗ SrT ∗X

��
Jr−1W

πr−1,0
//W
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This allows to define the symbol of the differential operator D as a map Σ: Γ(W ⊗
SrT ∗X)→Γ(Z) using the diagram

W ⊗ SrT ∗X

''

ι // JrW

��

Dr

""
W

D //

��

Z

||
X

δ

QQ

Denote π : T ∗X→X the canonical projection. Let us consider the situation in local
coordinate charts (U, xi) on X and adapted charts (τ−1(U), wa) resp. (ρ−1(U), zb) resp.
(π−1(U), pj).

zb(D(γ)) =
∑
|I|≤r

Db,I
a

∂|I|wa(γ)

∂xI

and
zb(Σ(D)(δ)) =

∑
|I|=r

Db,I
a wa(δ)pI(δ),

where I = (i1 . . . ik), 1 ≤ i1 ≤ · · · ≤ ik ≤ n = dimX is a symmetric multiindex, its
length is |I| = k,

∂|I|

∂xI
=

∂k

∂xi1 . . . ∂xik

and
pI = pj11 . . . p

jn
n ,

where j` is the number of times the index ` occurs in the multiindex I.

3. Example. Let W = Z = ΛrT ∗X, (·, ·) be a (semi)-Riemannian metric of signature
(n− p, p) on X. Consider the second order Laplace-Beltrami operator

� : Γ(ΛrT ∗X)→Γ(ΛrT ∗X),

where explicitly � = ? d ? d− d ? d ?.

The symbol of � then is

Σ(�)(p) = (p, p)(−1)r(n−r)+p idΓ(ΛrT ∗X)

4. Asymptotic expansions. Let B be a topological vector space (we always have
in mind B = Γ(W ); a sequence of sections converges if it has common support and
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it together with all derivatives of arbitrary finite order converge uniformly). Consider
smooth maps u, v : R→B. Consider the (equivalence) relation u ≈ v

lim
t→∞

tN(u(t)− v(t)), ∀N > 0.

We define the asymptotic expansion of u if there exists a series of vectors uk such
that

tN

(
u(t)−

∑
k≤N

ukt
−k

)
→ 0.

Clearly, if the series exists, it depends only on the equivalence class [u]. Let B1, . . . B`,
C be topological vector spaces and B : B1 × · · ·B`→C a continuous linear map. Then
we have

B([u1], . . . , [u`]) = [B(u1, . . . , u`).

An asymptotic differential operator [L] : Γ(W )→Γ(Z) is an asymptotic expansion
of operators Lk : E→F such that

L ≈
∑
k

Lkt
−k,

a simple asymptotic section of W has the form

γ ≈ exp(i tS)
∑
k

γk/(i t)
k.

We wish to solve Lγ = 0 asymptotically for a simple asymptotic section γ. We have

[L][γ] = exp(i tS)
∑
k

δk/(i t)
k, δk = 0 ∀k.

Define Σ([L]) =
∑

k Σ(Lk). We therefore demand

Σ([L])(dS)γ0 = 0 (the characteristic equation)

and for γk, k > 0, one may proceed inductively.

5. The method of Hamilton and Jacobi. So in order to get a solution, we must
demand

ker Σ([L])(dS) 6= 0.

The characteristic variety V ⊂ T ∗X consists of all points p where ker Σ([L])(p) 6= 0.
Now we have

(dS)(x) = 0 ∀x ∈ X.
so the image of dS must lie in V . The map dS can be thought of as X→T ∗X; it is a
(so called holonomic) section of T ∗X. We break the task into two parts:
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(a) Find a section γ : X→T ∗X such that γ(X) ⊂ V .

(b) Find a function S such that γ(x) = dS(x), ∀x ∈ X.

We have a canonical linear form α on T ∗X given by αp(vp) = p(Tπp · vp), p ∈ T ∗X,
vp ∈ TpT ∗X. So γ ∈ Γ(T ∗X) iff γ∗α = γ and γ = dS iff γ∗α = dS. Again we may try
to relax this condition in two ways:

(i) Take a closed 2-form ω and demand γ∗ω = 0. If ω = dα we get the previous
condition.

(ii) Do not require for γ to be a section of T ∗X. Let γ : Y →T ∗X such that γ∗ω =
0, dimY = dimX and γ is an immersion. Such a γ is called a Lagrangian
submanifold.

Notice that if ι : Λ→T ∗X is a Lagrangian submanifold and π ◦ ι a diffeomorphism then
γ = ι ◦ (π ◦ ι)−1 is a section of T ∗X.

Λ ι // T ∗X

π||
M

(π◦ι)−1

``

Let V ⊂ T ∗X. We seek a Lagrangian submanifold ι : Λ→T ∗X such that

(1) ι(Λ) ⊂ V ,

(2) π ◦ ι is a diffeomorphism,

(3) ι∗α = dS.

6. Solving (1)+(2)+(3). (1) This may be done on any symplectic manifold
(M,ω) (we have M = T ∗X and ω = dα). Let H be a function on M such that dH 6= 0
if H = 0. Define the vector field ξH by ω(ξH , ·) = − dH.

Theorem: Let V ⊂M be integrable of codimension k. Let Λ0 ⊂ V of dimension n−k
be isotropic (with respect to ω) and transversal to all ξf , f ∈ Zero(V ). Then there
exists (an essentially) unique Lagrangian submanifold Λ, Λ0 ⊂ Λ ⊂ V .

(2) The solution is clearly possible only locally, two manifolds of the same dimension
need not be diffeomorphic but they are always locally diffeomorphic.

(3) The solution is also possible locally, generally there are obstructions in the appro-
priate de Rham cohomology group.
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7. The bicharacteristic symbol. For each p ∈ T ∗X we have a linear map

Σ([L])(p) : Wπ(p)→Zπ(p).

Using the pullback by π we can consider W and Z as vector bundles over M = T ∗X
and consider the exact sequence

0 // ker Σ([L])(p) //Wp
Σ([L])(p)// Zp // im Σ([L])(p) // 0

So Σ: W →Z is a vector bundle map (over M !) and we have a map A : Wp→Zp,
∀p ∈ M . We choose local trivializations forE and F over U ⊂ M . For each w ∈ Wp

we choose γ : U→Wp such that γ(p) = w. then A ◦ γ : U→Zp and we can compute its
differential dp(A◦γ), so if ξ ∈ TpU then dp(A◦γ)(ξ) ∈ Zp and using the exact sequence
we can project on im Σ(p). For w ∈ ker Σ(p) we have a map I : ker Σ⊗ TM→ im Σ.

If dimW = dimZ, dim ker Σ = 1 and Σp 6= 0 ∀p 6= 0 we say that Σ is simple.
Using the 1-1 correspondence achieved by ω between vectors and covectors we may
define the bicharacteristic symbol R : ker Σ ⊗ T ∗M→ im Σ. The bicharacteristics
of R correspond to trajectories in M = T ∗X. and the space of such bicharacteristics
carries a natural contact structure.

8. Generalization to principal bundles with 1-dimensional fiber. Let G = R
or G = U(1) and G →X be principal G-bundle. Consider the manifold CG of contact
elements of G , i.e. the manifold of all hyperplanes in TG . The Hamilton-Jacobi equation
is equivalent to a G-invariant submanifold E, codimE = 1 in CG .

The space CharE of characteristics of E can be also given the structure of a contact
manifold (at least locally see Theorem). Let us suppose CharE is a contact manifold
and G acts also CharE, i.e. there exists a discrete normal subgroup H ⊂ G such that
CharE is a G/H-bundle. The base PhE of this G/H-bundle may be thought of as
phase space and the curvature of the bundle CharE→PhE may be thought of as
representing the usual symplectic form on phase space.

9. Generalization to arbitrary principal bundles. Let G be an arbitrary Lie
group. The setting is the same as in the case dimG = 1 with one crucial difference
— PhE can no longer be thought of as carrying a symplectic structure just a weak
generalization.
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