# Spherically symmetric vacuum spacetimes 

Michael Krbek

1. Preliminaries. We consider a smooth pseudo-Riemannian manifold $(M,\langle\cdot, \cdot\rangle)$, with signature $(r, s)$. For simplicity, we suppose the manifold $M$ is connected, the dimension of $M$ is $n$. First we need to consider the following question: We are given a smooth manifold $M$. Under which conditions does there even exist a smooth nondegenerate metric field of signature ( $r, s$ ) on $M$ ?

Lemma 1. The following statements are equivalent:
(1) There exist a smooth nondegenerate metric field $\langle\cdot, \cdot\rangle$ of signature $(r, s)$ on $M$.
(2) There exists a smooth distribution $V$ of constant rank $r$ on $M$.

Proof. (1) $\Rightarrow$ (2). There exists a smooth Riemannian metric $(\cdot, \cdot)$ on $M$ (see [1). Consider a point $x \in M$, tangent vectors $u, v \in T_{x} M$ and the vector subspace $V_{x}=\left\{u \in T_{x} M \mid\langle u, v\rangle=\right.$ $\left.(u, v), \forall v \in T_{x} M\right\}$. Then $V=\coprod_{x \in M} V_{x}$ is the sought distribution.
$(2) \Rightarrow(1)$. We again use the existence of a Riemannian metric $(\cdot, \cdot)$ on $M$. To any distribution $V$ of rank $r$ there exists a distribution $V_{\perp}$ so that $\left(V, V_{\perp}\right)=0$ and the rank of $V_{\perp}$ is $s=n-r, n=\operatorname{dim} M$. We construct an involution $\theta$ in the tangent space $T_{x} M$ such that $\theta(V)=$ id a $\theta\left(V_{\perp}\right)=-\mathrm{id}$. Define $\langle u, v\rangle_{x}=(u, \theta(v))_{x}$. Then $\langle\cdot, \cdot\rangle$ is a semi-riemannian metric of signature $(r, s)$.

For a Lorentzian metric (of signature ( $1, n-1$ )) , this construction gives a distribution of rank 1. If we assume that $M$ is orientable, this is equivalent to the existence of a vector field $\xi$ which generates $V$ at each point $x \in M$ (in order for the distribution $V$ to be of constant rank 1 , the vector field $\xi$ has to be everywhere non-zero).
2. Action of a compact Lie group on a semi-Riemannian manifold. Consider a compact Lie group $G$ and a left action of $G$ on $(M,\langle\cdot, \cdot\rangle)$, i.e. a smooth map

$$
G \times M \rightarrow M, \quad(g, x) \mapsto g x .
$$

Let us denote by $g_{*}$ the tangent map $x \mapsto g x$ for a fixed $g \in G$. The action is called isometric (with respect to $\langle\cdot, \cdot\rangle$ ) if $\left\langle g_{*} \xi, g_{*} \eta\right\rangle=\langle\xi, \eta\rangle$ for all $\xi, \eta \in \mathscr{X}(M)$.

Let $(\cdot, \cdot)$ be a Riemannian metric on $M$. Then we have the following
Lemma 2. Let $x \mapsto g x$ be an action of the compact Lie group $G$ on $M$. Then there exists a Riemannian metric $(\cdot, \cdot)$ on $M$ with respect to which the action is isometric.

Proof. Let $(\cdot, \cdot)^{\prime}$ be any Riemannian metric on $M$. Construct

$$
(\xi, \eta)=\frac{\int_{G} f\left(g_{*} \xi, g_{*} \eta\right)^{\prime} \mathrm{d} \mu(g)}{\int_{G} \mathrm{~d} \mu(g)}
$$

where $\mathrm{d} \mu$ is the Haar measure on $G$. This is invariant by construction and positive definite by inspection.

The preceding Lemma could have been proven without the assumption that $G$ is compact in which case one must assume the action to be proper. For the proof see 4.

Lemma 3. Let $x \mapsto g x$ be an action of the compact Lie group $G$ on $M$, isometric with respect to $\langle\cdot, \cdot\rangle$. Then the distribution $V$ from Lemma $\mathbb{\square}$ can be chosen to be invariant, i.e. $g_{*} V=V$.

Proof. Use Lemma 2 to construct an invariant metric. The construction $(1) \Rightarrow(2)$ is now invariant with respect to the $G$-action.
3. The homogeneous space $\mathbf{S}^{n}$. The group $\mathrm{O}(n+1)$ acts on $\mathbf{R}^{n+1}$ by its defining representation

$$
\begin{align*}
\mathrm{O}(n+1) & \rightarrow \mathrm{GL}\left(\mathbf{R}^{n+1}\right) \\
A & \mapsto A . \tag{1}
\end{align*}
$$

The orbits of the defining representation are spheres $\mathbf{S}^{n}$ (the zero vector in $\mathbf{R}^{n+1}$ is a singular orbit of dimension 0 ). Let us now restrict the defining representation to the subset $\mathbf{S}^{n} \subset \mathbf{R}^{n+1}$, $\mathbf{S}^{n}=\left\{\left(a_{1}, \ldots, a_{n+1}\right) \in \mathbf{R}^{n+1} \mid a_{1}^{2}+\cdots+a_{n+1}^{2}=1\right\}$. This action is transitive. Let us denote by $s=(0, \ldots, 0,1) \in \mathbf{S}^{n}$ (the north pole). For each $x \in \mathbf{S}^{n}$ there exists a $B \in \mathrm{O}(n+1)$ so that $B x=s$. If $x=s$ then $B$ can be f.e. the identity. If $x \neq s$ let us consider the orthonormal basis in $\mathbf{R}^{n+1}$ such that the last vector is $s$ and the second last vector lies in the plane given by $x$ and $s$. Let us further denote $\cos \varphi=\langle s, x\rangle$. Then

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \varphi & -\sin \varphi \\
0 & \sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{c}
0 \\
\sin \varphi \\
\cos \varphi
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

and the action is transitive.
Consider the isotropy group at the point $s$,

$$
\left(\begin{array}{cc}
A & v \\
w^{\mathrm{t}} & a
\end{array}\right)\binom{0}{1}=\binom{0}{1}
$$

so $v=0$ and $a=1$. For orthogonality to hold, we must have

$$
\left(\begin{array}{cc}
A^{\mathrm{t}} & w \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
A & 0 \\
w^{\mathrm{t}} & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

so $w=0$ and $A \in \mathrm{O}(n)$. The isotropy subgroup at this point (and every other point by transitivity) is isomorphic to $\mathrm{O}(n)$. So we can write

$$
\begin{equation*}
\mathrm{S}^{n}=\frac{\mathrm{O}(n+1)}{\mathrm{O}(n)} \tag{2}
\end{equation*}
$$

There is a induced homogeneous metric on $\mathbf{S}^{n}$ given up to a nonzero multiple. The tangent space at $s$ is $\mathbf{R}^{n}$, where we have the standard scalar product. Using the scalar product $\langle\cdot, \cdot\rangle$ at $s$ denoted by $\langle\cdot, \cdot\rangle_{s}$ we can define

$$
\langle u, v\rangle_{x}=\left\langle g_{*} g_{*}^{-1} u, g_{*} g_{*}^{-1} v\right\rangle_{g s}=\alpha\left\langle g_{*}^{-1} u, g_{*}^{-1} v\right\rangle_{s}=\alpha\left\langle g^{-1} u, g^{-1} v\right\rangle_{s},
$$

where $x=g s$ and such $g \in \mathrm{O}(n+1)$ exists by transitivity of the action and $g_{*}=g$ by linearity of the action.

Let us describe the tangent space to $\mathbf{S}^{n}$ more concretely. Choose a basis $e_{i j}=\delta_{i j}-\delta_{j i}$, $i<j$ in $\mathfrak{s o}(n+1)$. Then $\left[e_{i j}, e_{k l}\right]=-\delta_{i k} e_{j l}-\delta_{i l} e_{j k}+\delta_{j k} e_{i l}+\delta_{j l} e_{i k}$, where $e_{i j}=-e_{j i}$ if $i>j$. The Killing form is

$$
\begin{equation*}
K\left(e_{i j}, e_{k l}\right)=\sum_{r<s}\left[e_{i j}, e_{r s}\right]\left[e_{k l}, e_{r s}\right] \tag{3}
\end{equation*}
$$

The group $\mathrm{O}(n+1)$ is compact, its Killing form is therefore negative definite and so is its restriction to every subspace of the Lie algebra or the factor space $\mathfrak{s o}(n+1) / \mathfrak{s o}(n)$. In the $e_{i j}$ basis the Killing form is diagonal

$$
\begin{equation*}
K\left(e_{i j}, e_{k l}\right)=-2 n \delta_{i j, k l} . \tag{4}
\end{equation*}
$$

It may be proved (see 圂) that all $\mathrm{O}(n+1)$-invariant metrics on the sphere $\mathbf{S}^{n}$ are constant nonzero multiples of the metric induced by the Killing form.

The structure of the tangent space of $\mathbf{S}^{n}$ at the point $s$ is given as follows. The point $s=e s$ corrresponds to $e \in \mathrm{O}(n+1)$ and the tangent space at $e$ is given by matrices satisfying $X+X^{\mathrm{t}}=0$. The tangent space to the isotropy group at $s$ in $e$ is given by matrices

$$
\left(\begin{array}{ll}
Y & 0 \\
0 & 0
\end{array}\right)
$$

where $Y+Y^{\mathrm{t}}=0, Y$ is a matrix of order $n$. It holds

$$
T_{s} \frac{\mathrm{O}(n+1)}{\mathrm{O}(n)}=\frac{T_{e} \mathrm{O}(n+1)}{T_{e} \mathrm{O}(n)}=\left(\begin{array}{cc}
0 & v  \tag{5}\\
-v^{\mathrm{t}} & 0
\end{array}\right)
$$

Pick a basis in this space

$$
\left(X_{i}\right)=\left(\left(\begin{array}{cc}
0 & e_{i} \\
-e_{i}^{\mathrm{t}} & 0
\end{array}\right)\right),
$$

where $e_{i}$ is the standard basis in $\mathbf{R}^{n}$. We have the geodesic normal coordinates $\left(h_{1}, \ldots, h_{n}\right)$ of the point $x \in \mathbf{S}^{n}$ in the neighborhood of $s$

$$
\begin{equation*}
x=\mathrm{e}^{h_{1} X_{1}+\cdots+h_{n} X_{n}} s . \tag{6}
\end{equation*}
$$

With the notation $h=\sqrt{h_{1}^{2}+\cdots+h_{n}^{2}}$ we get

$$
x=\left(\begin{array}{c}
\frac{h_{1} \sin h}{h} \\
\vdots \\
\frac{h_{n} \sin h}{h} \\
\cos h
\end{array}\right) .
$$

These coordinates are defined averywhere except at the south pole.
Using the Campbell-Baker-Hausdorff formula we also have

$$
x=\mathrm{e}^{k_{n} X_{n}} \cdots \mathrm{e}^{k_{1} X_{1}} s
$$

and $\left(k_{1}, \ldots, k_{n}\right)$ are the (generalized) spherical coordinates. The meaning of the preceding formula is that we get $x \in \mathbf{S}^{n}$ from $s$ by successive rotations in the planes $\left[E_{1}, s\right]$, then $\left[E_{2}, s\right]$ and finally $\left[E_{n}, s\right]$, where

$$
E_{i}=\binom{e_{i}}{0}
$$

The computation gives

$$
x=\left(\begin{array}{r}
\sin k_{1}  \tag{7}\\
\sin k_{2} \cos k_{1} \\
\sin k_{3} \cos k_{2} \cos k_{1} \\
\vdots \\
\sin k_{n} \cos k_{n-1} \cdots \cos k_{1} \\
\cos k_{n} \cos k_{n-1} \cdots \cos k_{1}
\end{array}\right)
$$

The $k_{i}$ take values in $-\pi / 2<k_{1}, \ldots, k_{n-1}<\pi / 2,-\pi<k_{n}<\pi$. The spherical coordinates are orthogonal with respect to the metric on $\mathbf{S}^{n}$ by construction, the metric is

$$
G=\left(\begin{array}{lllll}
1 & & & & \\
& \cos ^{2} k_{1} & & & \\
& & \cos ^{2} k_{1} \cos ^{2} k_{2} & & \\
& & & \ddots & \\
& & & & \cos ^{2} k_{1} \ldots \cos ^{2} k_{n}
\end{array}\right)
$$

in geodesic normal coordinates the metric is not diagonal.
4. Smooth actions of compact groups on manifolds. Let $\varphi: G \times M \rightarrow M$ be the left action of the Lie group $G$ on a smooth manifold $M$. Pick a point $x \in M$ and consider the orbit $G x=\{y \in M \mid \exists g \in G: y=\varphi(g, x)=g x\}$ and the isotropy subgroup $G_{x}=\{g \in G \mid x=$ $\varphi(g, x)=g x\}$. The isotropy subgroups in two points $x$ and $y$ on the same orbit are isomorphic, the isomorphism is given by conjugation by such $g$ that $y=\varphi(g, x) . G_{y}=g G_{x} g^{-1} \cong H$. The orbit $G x$ going through $x$ is called of type $G / H$.
Example 1. Consider the vector space $M=\left\{X \in \mathfrak{g l}(3) \mid X=X^{\mathrm{t}}, \operatorname{Tr} X=0\right\}$ with the action $\varphi$ of $\mathrm{SO}(3)$ by conjugation $\varphi:(g, X) \mapsto g X g^{-1}$. It is known from basic linear algebra that any symmetric matrix is diagonalizable by an orthogonal conjugation, the orbits can be parametrized by the three eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$ such that $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$. There are several orbit types on $M$
(i) $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$, the isotropy subgroup is the whole $\mathrm{SO}(3)$ and the orbit is a point.
(ii) $\lambda_{1}=\lambda_{2}>\lambda_{3}$, the isotropy subgroup is

$$
\left(\begin{array}{cc}
A & 0 \\
0 & \pm 1
\end{array}\right),
$$

where $A \in \mathrm{O}(2)$, $\operatorname{det} A= \pm 1$, the orbit is isomorphic to $\mathbf{R} P^{2} \cong \mathrm{SO}(3) /\left(\mathrm{O}(2) \ltimes \mathbf{Z}_{2}\right)$.


Figure 1: Orbits on $M$
(iii) $\lambda_{1}>\lambda_{2}=\lambda_{3}$, here again

$$
\left(\begin{array}{cc} 
\pm 1 & 0 \\
0 & A
\end{array}\right)
$$

and the orbit is isomorphic to $\mathbf{R} P^{2} \cong \mathrm{SO}(3) /\left(\mathrm{O}(2) \ltimes Z_{2}\right)$.
(iv) $\lambda_{1}>\lambda_{2}>\lambda_{3}$, the isotropy subgroup here is

$$
\left(\begin{array}{ccc} 
\pm 1 & 0 & 0 \\
0 & \pm 1 & 0 \\
0 & 0 & \pm 1
\end{array}\right)
$$

isomorphic to $\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$. The orbit is isomorphic to $\mathrm{SO}(3) /\left(\mathbf{Z}_{2} \oplus \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}\right)$.
Quite generally two orbits $G x, G y$ are of the same type $G / H$, if their isotropy subgroups are both isomorphic to $H$. When $H \subseteq G$ is a subgroup, we can partially order different subgroups using set inclusion $\subseteq$. We define

$$
[H] \leq\left[H^{\prime}\right] \Longleftrightarrow \exists K \in[H], K^{\prime} \in\left[H^{\prime}\right]: K \subseteq K^{\prime}
$$

which is equivalent to

$$
[H] \leq\left[H^{\prime}\right] \Longleftrightarrow \exists g \in G: g H g^{-1} \subseteq H^{\prime}
$$

When $G$ is not compact, the relation need not be antisymmetric. We have
Lemma 4. Let $G$ be a compact Lie group, $H \subseteq G$ its closed subgroup. Then

$$
g H g^{-1} \subseteq H \Longrightarrow g H g^{-1}=H
$$

Proof. By iteration we have $g H g^{-1} \subseteq H \Rightarrow g^{n} H g^{-n} \subseteq H$ for all $n \in \mathbf{N}_{0}$. Let us analyze the set $A=\left\{g^{n} \mid n \in \mathbf{N}_{0}\right\}$. We shall show that $g^{-1}$ lies in the closure $\bar{A}$. We need to distinguish two cases
(i) $e$ is a limit point in $A$. Then for each its neighborhood $U$, there must exist an index $n$ so that $g^{n} \in U$. It follows $g^{n-1} \in g^{-1} U \cap A$ and the set $g^{-1} U$ is a neighborhood of $g^{-1}$, all such $g^{-} 1 U$ are a local basis at $g^{-1} \in \bar{A}$.
(ii) $e$ is a discrete point in $\bar{A}$. But $G$ is compact and $A$ is therefore a finite set, so $g^{n}=e$ for some $n \in \mathbf{N}$. We obtain $g^{-1}=g^{n-1} \in A$.

The conjugation conj: $(g, h) \mapsto g h g^{-1}$ is continuous as a map $G \times G \rightarrow G$ and $H$ is closed, so $\operatorname{conj}(\bar{A}, H) \subseteq H$, especially $g^{-1} H g \subseteq H$.

Let $x \in M$ be a point and $G x$ the orbit through it. The orbit is called principal if there exists an invariant neighborhood $U$ of the point $x \in M$ and for all $y \in U$ an equivariant map $G x \rightarrow G y$. Points which lie on principal orbits are called regular, other points are called singular. A subset $S \subset M$ is called a slice at $x$ if there exists a $G$-equivariant open neighborhood $U$ of the orbit $G x$ and a smooth retraction $r: U \rightarrow G x$ such that $S=r^{-1}(x)$.
Example 2. Consider the defining representation of $G=\mathrm{SO}(3)$ on $M=\mathbf{R}^{3}$. Let $x=(0,0,1)$. The orbit is $G x=\mathbf{S}^{2}$. We shall show that this orbit is principal Let $y$

$$
U_{\epsilon}=\left\{\left(y_{1}, y_{2}, y_{3}\right) \in \mathbf{R}^{3} \mid \epsilon^{2}<y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right\},
$$

where $\epsilon>0$. The retraction $r: U_{\epsilon} \rightarrow G x$ is defined as

$$
r:\left(y_{1}, y_{2}, y_{3}\right) \mapsto \frac{\left(y_{1}, y_{2}, y_{3}\right)}{\sqrt{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}}}
$$

The point $O=(0,0,0)$ is a singular point of the action, $G_{O}=\mathrm{SO}(3)$, the orbit is the point $O$ itself. There are only regular points in any open neighborhood of the point $O$.

Orbits of singular points are themselves called singular (singular orbits are isomorphic to $G / K$, where $\operatorname{dim} K>\operatorname{dim} H$ ). There is a third possibillity: the orbit is of maximal dimension but is not isomorphic to the principal orbit. We call such orbits exceptional.
Example 3. Consider the left action $\psi: \mathrm{SO}(3) \times \mathrm{SO}(3) \rightarrow \mathrm{SO}(3)$ of the group $G=\mathrm{SO}(3)$ on itself by conjugation. $\psi:(g, h) \mapsto g h g^{-1}$. We know from linear algebra that there always exists an orthonormal basis with respect to which

$$
h(\varphi)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \varphi & -\sin \varphi \\
0 & \sin \varphi & \cos \varphi
\end{array}\right) .
$$

The orbit $G e=G h(0)$ is singular, the isotropy subgroup is the whole $G_{e}=\operatorname{SO}(3)$. For $\varphi=\pi$ the orbit is exceptional $G h(\pi) \cong \mathbf{R} P^{2}$. The remaining orbits $G h(\varphi), 0<\varphi<\pi$, are spheres $\mathbf{S}^{2}$ and their isotropy subgroup is $\mathrm{SO}(2)$. From this follows the model of the $\mathrm{SO}(3)$ manifold as a closed ball of radius $\pi$, where we identify the antipodal points on the boundary. The center of the ball corresponds to the singular orbit.
5. Warped products. This part of the exposition follows 2. Suppose $M=B \times F$, where $\left(B,\langle\cdot, \cdot\rangle_{B}\right)$ and $\left(F,\langle\cdot, \cdot\rangle_{F}\right)$ are (semi)riemannian manifolds, $f$ a positive function on $B$. We construct the (semi)riemannian metric on $M$ : pick an arbitrary point $x=(a, b) \in M=B \times F$. Then the tangent space at this point is $T_{x} M=T_{a} B \oplus T_{b} F$ and each tangent vector $(x, \xi)$ can be unambiguously written as $(a, \alpha)+(b, \beta)$. The scalar product on $M$ is then defined by

$$
\begin{equation*}
\left\langle\xi, \xi^{\prime}\right\rangle(x):=\left\langle\alpha, \alpha^{\prime}\right\rangle_{B}(a)+f^{2}(a)\left\langle\beta, \beta^{\prime}\right\rangle_{F}(b) . \tag{8}
\end{equation*}
$$

If the metric signature on $B$ is $(r, s)$ and $\left(r^{\prime}, s^{\prime}\right)$ on $F$ then the metric signature on $M$ is obviously $\left(r+r^{\prime}, s+s^{\prime}\right)$. The whole construction is a generalization of a surface of revolution; in this case $B$ is a plane curve which does not intersect the axis of revolution, $f(a)$ gives the distance of the point $a$ from the axis, $F=\mathbf{S}^{1}$. Warped products are denoted by $B \times_{f} F$.

On $p: B \times F \rightarrow B$ (and more generally on a Riemannian submersion $p: M \rightarrow B$ ) there exist special subbundles of the tangent bundle: the vertical subbundle $V M=\operatorname{ker} p_{*}$ and the horizontal subbundle $H M=V M^{\perp}$ (the definition of a Riemannian submersion demands that $H_{x} M \cong T_{p(x)} B$ for all $\left.x \in M\right)$. The sections of these subbundles are called vertical resp. horizontal vector fields. There is a special class of horizontal vector fields, called basic defined as follows: Take any vector field $\eta$ on $B$. Then there exists a unique horizontal vector field $\xi$ such that $\xi p^{*}=p^{*} \eta$. The basic vector fields span $H M$ (for dimensional reasons).

We can compute the relevant tensor fields for warped products following 2. Let $\xi, \eta$ be basic vector fields and $X, Y, Z$ vertical vector fields. Let Riemann ${ }^{F}$ denote the Riemann curvature tensor field on the fiber $F$. We assume $\operatorname{dim} M=4$ and $\operatorname{dim} F=2$. For the Riemann curvature on $M$ we obtain

$$
\operatorname{Riemann}_{X Y} Z=\operatorname{Riemann}_{X Y}^{F} Z-\frac{\left\langle(\mathrm{d} f)^{\#},(\mathrm{~d} f)^{\#}\right\rangle_{B}}{f^{2}}\left(\langle X, Z\rangle_{F} Y-\langle Y, Z\rangle_{F} X\right)
$$

and defining the Hessian of the function $f$ by

$$
\operatorname{Hessian}_{f}(\xi, \eta)=\left\langle\left[\nabla_{\xi}(\mathrm{d} f)^{\#}, \eta\right\rangle_{B}=\left(\xi \eta-\nabla_{\xi} \eta\right) f\right.
$$

which is a symmetric tensor field of type $(0,2)$, we may write

$$
\left\langle\operatorname{Riemann}_{\xi X} \eta, Y\right\rangle=-\frac{\operatorname{Hessian}_{f}(\xi, \eta)}{f}\langle X, Y\rangle_{F},
$$

for the Ricci curvature

$$
\begin{align*}
\operatorname{Ricci}(\xi, \eta) & =\operatorname{Ricci}^{B}(\xi, \eta)-\frac{2}{f} \operatorname{Hessian}_{f}(\xi, \eta)  \tag{9}\\
\operatorname{Ricci}(\xi, X) & =0  \tag{10}\\
\operatorname{Ricci}(X, Y) & =\operatorname{Ricci}^{F}(X, Y)-\langle X, Y\rangle_{F}\left(\frac{\star \mathrm{~d} \star \mathrm{~d} f}{f}+\frac{\left\langle(\mathrm{d} f)^{\#},(\mathrm{~d} f)^{\#}\right\rangle_{B}}{f^{2}}\right) \tag{11}
\end{align*}
$$

here $\star$ is the Hodge operator and $\nabla$ the Levi-Civita connection (both with respect to $\langle\cdot, \cdot\rangle_{B}$ ). Example 4 (The Kruskal solution). We take

$$
B=\left\{(v, u) \in \mathbf{R}^{2} \mid u^{2}-v^{2}>1\right\}
$$

and

$$
f(u, v)=1+\mathrm{W}\left(\frac{v^{2}-u^{2}}{\mathrm{e}}\right) .
$$

Then we define the metric on $B$ by

$$
\begin{equation*}
\frac{4 \mathrm{e}^{-f(u, v)}}{f(u, v)}\left(\mathrm{d} u^{2}-\mathrm{d} v^{2}\right), \tag{12}
\end{equation*}
$$

where $z \mapsto \mathrm{~W}(z)$ is the principal branch of the Lambert W-function, the solution of $z=$ $\mathrm{W}(z) \mathrm{e}^{\mathrm{W}(z)}$. The manifold $F$ is the sphere $\mathbf{S}^{2}$ with the standard negative definite metric induced by the Killing form. For the metric

$$
\frac{4 \mathrm{e}^{-f(u, v)}}{f(u, v)}\left(\mathrm{d} u^{2}-\mathrm{d} v^{2}\right)+f^{2}(u, v) \gamma
$$

where $\gamma$ is the standard metric on $\mathbf{S}^{2}$ given locally by $\mathrm{d} k_{1}^{2}+\cos ^{2} k_{1} \mathrm{~d} k_{2}^{2}$, the following holds

$$
\begin{equation*}
\text { Ricci }=0, \quad R=0, \quad \text { Einstein }=0 . \tag{13}
\end{equation*}
$$



Figure 2: The Function $1+\mathrm{W}(x / \mathrm{e})$


Figure 3: Hyperbolic plane $u^{2}-v^{2}>1$
6. Centrally symmetric spacetimes. Let $G=\mathrm{SO}(3, \mathbf{R})$ be the compact Lie group and $(M,\langle\cdot, \cdot\rangle)$ a semi-Riemannian manifold of signature $(1,3)$. We say that $(M,\langle\cdot, \cdot\rangle)$ is centrally symmetric if there exists an isometric proper $G$-action $\varphi$ all of whose orbits are spheres
$\mathbf{S}^{2}=\mathrm{SO}(3) / \mathrm{SO}(2)$.

$$
\begin{aligned}
& \varphi: G \times M \rightarrow M \\
& \varphi:(g, x) \mapsto \varphi(g, x)=g x .
\end{aligned}
$$

The action is proper if the preimages of compact sets by the map $(g, x) \mapsto(g x, x)$ are compact. The action is isometric if $\left\langle g_{*} \xi, g_{*} \eta\right\rangle=\langle\xi, \eta\rangle$ for all $g \in G$ and all vector fields $\xi, \eta \in \mathscr{X}(M)$. The orbit of the point $x \in M$ is denoted by $G x$.

The sphere is viewed as the homogeneous space $G / G_{x}=\operatorname{SO}(3, \mathbf{R}) / \mathrm{SO}(2, \mathbf{R})$, where $G_{x}$ is the stabilizer of $x \in M$. The Riemannian metric $\gamma$ on the sphere is constructed using the Maurer-Cartan form on $\mathrm{SO}(3)$ corestricted from $\mathfrak{g}=\mathfrak{s o}(3, \mathbf{R})$ to the factor vector space $\mathfrak{s o}(3, \mathbf{R}) / \mathfrak{s o}(2, \mathbf{R})$ and the negative definite Killing form. This metric is unique up to a constant positive multiple (this corresponds to different sphere radii). Orbits of different points are therefore spheres $\mathbf{S}^{2}$ with varying radii.

Theorem 5. Let $(M,\langle\cdot, \cdot\rangle)$ be a centrally symmetric spacetime. Then $M$ is the total space of a semi-Riemannian fibre bundle $\left(M, B, p, \mathbf{S}^{2}\right)$, where $p: M \rightarrow B$ is a surjective submersion and the fibre is $p^{-1}(b)=\mathbf{S}^{2}$. Moreover, the metric on this fibre bundle is a warped product

$$
\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle_{B}+f^{2}\langle\cdot, \cdot\rangle_{\mathbf{S}^{2}},
$$

where $f$ is a positive function on $B$.

Proof. The space $B=M / G$ can be thought of as the space of orbits of the action by $G$ on . This induces a topological and smooth structure on $B$ in the standard way such that the factor projection $p: M \rightarrow M / G$ is continuous and smooth.

We have to construct a local trivialization on some neighborhood of each point $x \in M$. We proceed as follows: $(M,\langle\cdot, \cdot\rangle)$ is a semi-Riemannian manifold of signature $(1,3)$, therefore there exists a one-dimensional distribution $\xi$ which can be chosen invariant with respect to the $\mathrm{SO}(3)$-action by Lemma 3 and the corresponding invariant Riemannian metric denoted by $(\cdot, \cdot)$, see Lemma 2, We can now use the results from [ 4.

The orbit $G x$ is a sphere $\mathbf{S}^{2}$ embedded in $M$ by $\iota: \mathbf{S}^{2} \rightarrow M$. Consider the normal bundle $N \mathbf{S}^{2}:=\left\{v \in T M \mid(v, w)=0\right.$ for all $\left.w \in T \iota T \mathbf{S}^{2}\right\}$ and the exponential map applied to $0_{x}$ in a small enough ball $B_{r}\left(0_{x}\right)$ so that $\exp _{x}: T_{x} M \supset B_{r}\left(0_{x}\right) \rightarrow M$ is a diffeomorphism on its image $\exp _{x}\left(B_{r}\left(0_{x}\right)\right) \cap G x . B_{r}\left(0_{x}\right)$ denotes a cylindrical neighborhood of $0_{x}$ in $N \mathbf{S}^{2}$. The inverse is the sought local trivialization of $\left(M, B, p, \mathbf{S}^{2}\right)$.

The inner product

$$
\left\langle T_{x} p \xi_{x}, T_{x} p \eta_{x}\right\rangle_{B}=\left\langle\xi_{x}, \eta_{x}\right\rangle
$$

is well defined for $\xi, \eta \in H M$. Therefore the metric on $M$ is a warped product.
Lemma 6. The one-dimensional distribution $\xi$ projects to $B$ via the map Tp giving rise to $a$ one-dimensional distribution on $B$.

Proof. $\xi$ can be chosen invariant, i.e. spanned by local horizontal vector fields. These fields correspond to basic vector fields by definition of a Riemannian submersion.
7. Birkhoff's theorem. This section is almost entirely based on 5.

## References.

[1] Chern, Chen, Lam, Lectures on Differential Geometry, World Scientific, 2000, Singapore
[2] Sternberg, Semi-Riemannian Geometry and General Relativity, 2003, http://www.math.harvard.edu/~shlomo/docs/semi_riemannian_geometry.pdf
[3] Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, AP, 1978
[4] Michor, Isometric Actions of Lie Groups and Invariants, 1997, http://www.mat.univie.ac.at/~michor/tgbook.pdf
[5] Ševera, On geometry behind Birkhoff theorem, 2002, http://arxiv.org/abs/gr-qc/0201068

