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The geometric structure of gauge natural theories is investigated. We study
especially the Einstein-Yang-Mills theory, an example of gauge natural theory,
describing the interaction of gravity with the Yang-Mills field. We consider the
Yang-Mills part of the theory with a general Lie group G, at no cost in compli-
cations, the choice G = U(1) corresponds to electromagnetism. The global vari-
ational functional, defined by the Hilbert-Yang-Mills Lagrangian over a smooth
manifold, is investigated within the framework of prolongation theory of prin-
cipal fiber bundles, and global variational theory on fibered manifolds. The
principal Lepage equivalent of this Lagrangian is constructed, and the corre-
sponding infinitesimal first variation formula is obtained. It is shown, in partic-
ular, that the Noether currents, associated with isomorphisms of the underlying
geometric structures, split naturally to several terms, one of which is exterior
derivative of the Komar-Yang-Mills superpotential. Consequences of invariance
of the Hilbert-Yang-Mills Lagrangian under isomorphisms of underlying geomet-
ric structures such as Noether’s conservation laws for global currents are then
established. We give also some examples of Komar-Yang-Mills superpotentials
corresponding to several solutions of the Einstein equations.
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Je zkoumána geometrická struktura přirozeně kalibračńıch teoríı. Studujeme
předevš́ım Einsteinovu-Yangovu-Millsovu teorii, př́ıklad přirozeně kalibračńı teo-
rie, popisuj́ıćı interakci gravitace s Yangovým-Millsovým polem. Yangovu-Mill-
sovu část teorie uvažujeme, bez větš́ıch komplikaćı, s obecnou Lieovou grupouG,
volba G = U(1) odpov́ıdá elektromagnetismu. Globálńı variačńı funkcionál,
definovaný Hilbertovým-Yangovým-Millsovým lagrangiánem nad hladkou vari-
etou, je zkoumán pomoćı prolongačńı teorie hlavńıch fibrovaných prostor̊u a
globálńı variačńı teorie na fibrovaných varietách. Je zkonstruován hlavńı Lepa-
ge̊uv ekvivalent tohoto lagrangiánu a źıskána odpov́ıdaj́ıćı infinitezimálńı prvńı
variačńı formule. Zvláště je ukázáno, že Noetherovské proudy, asociované s izo-
morfismy podkladových geometrických struktur, se přirozeně štěṕı na několik
člen̊u, jeden z nich je vněǰśı derivace Komarova-Yangova-Millsova superpoten-
ciálu. Pak jsou uvedeny d̊usledky invariance Hilbertova-Yangova-Millsova la-
grangiánu v̊uči izomorfismům podkladových geometrických struktur, jako Noe-
therovské zákony zachováńı pro globálńı proudy. Předkládáme také př́ıklady
Komarova-Yangova-Millsova superpotenciálu pro několik řešeńı Einsteinových
rovnic.
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not least, I have to thank my dearests.

Aleš Paták



Contents

1 Introduction 1

2 Gauge Natural Bundles and Operators 3
2.1 Jets and Gauge Natural Bundles . . . . . . . . . . . . . . . . . . 3
2.2 Gauge Natural Operators . . . . . . . . . . . . . . . . . . . . . . 20

3 Variational Theory on Fibered Manifolds 23
3.1 The Lagrangian and the Action Function . . . . . . . . . . . . . 23
3.2 Gauge Natural Structures . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Noether’s Theorem and Induced Variations . . . . . . . . . . . . 32

4 The Hilbert-Yang-Mills Functional 36
4.1 The Gauge Natural Structure of Einstein-Yang-Mills Theory . . 36
4.2 The Hilbert-Yang-Mills Lagrangian and Induced Variations . . . 42

5 Examples 54
5.1 Levi-Civita-Bertotti-Robinson Solution . . . . . . . . . . . . . . . 54
5.2 Reissner-Nordström Solution . . . . . . . . . . . . . . . . . . . . 55
5.3 Kerr-Newman Solution . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Colored Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . 58

i



Chapter 1

Introduction

The goal of this thesis is to investigate the geometric structure of gauge natural
theories. The main part of this work is devoted to the global variational for-
mulation of the Einstein-Yang-Mills theory. We decided to include the proofs
in this thesis, in the hope that it will be more readable, comprehensible, and
controllable. It can serve also as a brief introductory text to the study of the
gauge natural structure of classical field theories.

To get a description of physical and geometrical phenomena, many authors
prefer classical coordinate approach, and use classical concepts of variations;
global and structure aspects of the theory have often been left quite aside. It
seems that one of the main reasons for this consist in indistinguishable possibil-
ities how to replace a basic notion for globalization, the Poincaré-Cartan form
in the first order variational calculus, with its suitable generalization for higher
order problems.

Our exposition of the subject is based on the prolongation theory of principal
fiber bundles due to Kolář ([25, 34] and the references therein) and the general
variational theory on fibered manifolds due to Krupka (see e.g. [8, 30, 31]). We
are led to a definition of a gauge natural structure of gauge natural field theories.
We remark that similar approach is in [16]. We use Lepage forms and Kolář’s
prolongation theory with the aim to give new, exact exposition on the Hilbert-
Yang-Mills functional. We also apply the theory to several known examples.
Our results agree with known predictions from theoretical physics.

The trends to extend coordinate understanding of physical laws and phe-
nomena to smooth manifolds have successfully modified many disciplines of
mathematics and mathematical physics. First steps, emphasizing the geometric
structure of the Einstein-Yang-Mills theory, were made by Bleecker [4]. Fatibene
and Francaviglia [16] interpreted the Einstein-Yang-Mills theory by means of a
variational principle for sections of fiber bundles; the underlying variational con-
cepts are Lepage forms (Krupka [28, 29]), generalizing the well-known concept
of the first order Poincaré-Cartan form.

Our contribution in this thesis consists in the following innovations. We
prove the Utiyama-like theorem for the Einstein-Yang-Mills theory by apply-
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Chapter 1. Introduction 2

ing the orbit reduction method, a powerful method for computing invariants
of group actions. We systematically use the principal prolongation theory of
principal fiber bundles; in particular, the prolongation theory gives us a general
formula for prolongations of the generators of automorphisms of the underlying
structure bundle to configuration bundle. We also give a new direct proof for the
splitting of the currents in the Einstein-Yang-Mills theory into three summands,
one of which is the exterior derivative of the Komar-Yang-Mills superpotential.
We show that the theory allows us to compute the most general expression for
the Komar-Yang-Mills superpotential, and we find an explicit expression for
several solutions of the Einstein equations.

This work differs conceptually from [16] in several aspects. We prefer differ-
ential forms, which describe the underlying global structures of the theory. The
main reason for this consists in the fact that the first variation formula con-
tains the exterior derivative operator d. In particular, d is an essential operator,
describing the global structure of many variational constructions (see [31]). It
should also be pointed out that our equations of motion for the Einstein-Yang-
Mills fields differ from the equations derived in [16].

The thesis is organized as follows. Chapter 2 is devoted to main definitions
and results of the theory of gauge natural bundles and operators. This geometric
background of many physical theories is well suited for the description of their
invariance properties like the independence on diffeomorphisms and the gauge
transformations. In Chapter 3 we give a survey of the general variational theory
and we focus our attention on the concepts needed in the Einstein-Yang-Mills
theory. A basic element of the theory is the so called principal Lepage form
introduced in [28], a Lepage equivalent of the second order Lagrangian λ, that
enjoys similar properties as the first order Poincaré-Cartan form. In Chapter 4
we study the geometric structure of the Einstein-Yang-Mills theory. The gravi-
tational field and the Yang-Mills field are considered together as a section of an
appropriate fibered manifold. We introduce the Hilbert-Yang-Mills functional,
whose Lagrangian λ is the sum of the Hilbert Lagrangian for a free metric field
on a manifold X, and the Yang-Mills Lagrangian for a principal connection
field on X. We derive the principal Lepage equivalent of the Hilbert-Yang-Mills
Lagrangian and give the corresponding (global, infinitesimal) first variation for-
mula. We analyze the invariance of λ with respect to isomorphisms of underlying
geometric structures, the manifold X and a principal G-bundle over X. Fur-
ther we discuss the first variation formula for induced variations. In Chapter 5,
we study some examples. We analyze the Komar-Yang-Mills superpotential for
some solutions of the Einstein-Yang-Mills equations: the Levi-Civita-Bertotti-
Robinson solution, the Reissner-Nordström solution, the Kerr-Newman solution
and the so called embedded Abelian solution (the colored black hole); further
we comment on the conserved quantities.



Chapter 2

Gauge Natural Bundles and
Operators

A fiber bundle is the generalization of the well known tangent space.
Bundles play a very important role in mathematics as well as in
physics. For example the jet bundle is the main structure, which
appears in the calculus of variations, and gauge natural bundles serve
in theoretical physics as configuration spaces. Geometric objects
from differential geometry and matter fields from physics can be
considered as sections of some bundles. In this chapter we introduce
jets, gauge natural bundles and their operators. For the notation
and terminology in this chapter we refer to [25, 34].

2.1 Jets and Gauge Natural Bundles

Two curves γ, δ : R→X in a manifold X have r-th contact at zero and we
write γ ∼r δ, if for every smooth function φ on X the difference φ ◦ γ − φ ◦ δ
vanishes to r-th order at 0 ∈ R, i.e. all derivatives up to order r of the difference
vanish at 0 ∈ R (γ ∼0 δ means γ(0) = δ(0)). The relation ∼r is obviously
an equivalence relation. Two maps f, g : X→Y between two manifolds X
and Y are tangent to order r at x ∈ X, if for every curve γ : R→X with
γ(0) = x holds f ◦ γ ∼r g ◦ γ. This is an equivalence relation too and the
equivalence class whose representative is a map f is called r-jet of f at x
(or simply a jet) and is denoted by Jrxf . The set of all r-jets of X into Y
is denoted by Jr(X,Y ). The map Jrxf 7→ x sending a jet to its source is
called the source projection and is denoted by α. The map Jrxf 7→ f(x)
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Chapter 2. Gauge Natural Bundles and Operators 4

sending a jet to its target is called the target projection and is denoted
by β. We denote by πr,s, 0 ≤ s ≤ r the canonical projection Jrxf 7→ Jsxf
of r-jets into s-jets. We write Jrx(X,Y ) or Jr(X,Y )y for the set of all r-jets
of X into Y with source x ∈ X or target y ∈ Y , respectively, and Jrx(X,Y )y =
Jrx(X,Y )∩ Jr(X,Y )y. The map Jrf : X→ Jr(X,Y ) given by Jrf(x) = Jrxf is
called the r-jet prolongation of f : X→Y .

The following theorem can serve as an equivalent definition of a jet (as in [34]
or [32]).

Theorem 2.1. Two maps f, g : X→Y satisfy Jrxf = Jrxg iff there exists a
chart (U,ϕ) at x and a chart (V, ψ) at f(x) such that

Dk(ψ ◦ f ◦ ϕ−1)(ϕ(x)) = Dk(ψ ◦ g ◦ ϕ−1)(ϕ(x)) (2.1)

holds for each k, 0 ≤ k ≤ r.

Proof: First we remark that in components, (fp) = (yp◦f ◦ϕ−1) = ψ◦f ◦ϕ−1,
(gp) = (yp ◦ g ◦ ϕ−1) = ψ ◦ g ◦ ϕ−1, 1 ≤ p ≤ dim(Y ) the condition (2.1) for
f, g to be tangent to order r at x ∈ X is equivalent to the following condition:
f(x) = g(x) and

Di1Di2 . . . Dikf
p(ϕ(x)) = Di1Di2 . . . Dikg

p(ϕ(x))

for each k, 1 ≤ k ≤ r, where 1 ≤ i1, i2, . . . , ik ≤ n = dim(X), i.e. all the partial
derivatives up to order r of the components fp and gp coincide at ϕ(x). In fact,
its enough to recall the identity from differential calculus for a map f̃ from some
open set in Rn into a Banach space having k-th derivation (see [12]); we have
with ti = (ξij) (1 ≤ i ≤ k, 1 ≤ j ≤ n)

Dkf̃(x̃) · (t1, . . . , tk) =
∑

(j1,j2,...,jk)

Dj1Dj2 . . . Djk f̃(x̃)ξ1j1ξ2j2 . . . ξkjk ,

where we sum over all nk possibilities.
Now we deduce that two curves γ, δ : R→Y satisfy γ ∼r δ iff

dk(yp ◦ γ)(0)
dtk

=
dk(yp ◦ δ)(0)

dtk
(2.2)

for each k, 1 ≤ k ≤ r, and for all coordinate functions yp. In fact, γ ∼r δ implies
that yp ◦ γ − yp ◦ δ vanishes to order r, and so (2.2) holds. Conversely, we first
recall the higher order chain rule. We use the shorthand notation. For a
set of positive integers I = {i1, i2, . . . , ik}, 1 ≤ i1, i2, . . . , ik ≤ n, we denote by
DI = Di1Di2 . . . Dik the partial derivative. Let Ũ ⊂ Rn and Ṽ ⊂ Rm be open
sets, let f̃ : Ṽ →R be a smooth function, and let g̃ = (g̃σ), 1 ≤ σ ≤ m, be a
smooth mapping of Ũ into Ṽ . Then we have

Dis . . . Di2Di1(f̃ ◦ g̃)(t)

=
s∑

k=1

∑
(I1,I2,...,Ik)

Dσk . . . Dσ2Dσ1 f̃(g̃(t))DIk g̃
σk(t) . . . DI2 g̃

σ2(t)DI1 g̃
σ1(t),
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where the second sum is understood to be extended to all partitions (I1, I2, . . . , Ik)
of the set {i1, i2, . . . , is}. This can be proved by induction (see [32]). Given a
function φ̃ on Y , we find by the higher order chain rule that all partial deriva-
tives (and so all derivatives) up to order r of φ̃ ◦ γ at zero depend only on
the partial derivatives up to order r of φ̃ at (yp ◦ γ)(0) and on the derivatives
dk(yp◦γ)(0)

dtk
, which occur in Equation (2.2). Hence φ̃◦γ− φ̃◦δ vanishes to order r

at 0 and Equation (2.2) really implies γ ∼r δ.
If we suppose that the partial derivatives up to the order r of fp and gp

coincide at ϕ(x), then the higher order chain rule implies f ◦ γ ∼r g ◦ γ by the
previous paragraph. Thus we get Jrxf = Jrxg. Conversely, if we suppose that
Jrxf = Jrxg holds, then using the curves of the form ϕ ◦ γ(t) = at for arbitrary
a ∈ Rn we get from f ◦ γ ∼r g ◦ γ in the coordinates

∑
|i|=k(Dif

p(0))ai =∑
|i|=k(Dig

p(0))ai (with 0 ≤ k ≤ r), where i = (i1, . . . , in) is an n-tuple of
non-negative integers, so called multiindex of range n, ai = (a1)i1 . . . (an)in

for a = (a1, . . . , an) ∈ Rn, |i| = i1+· · ·+in, Dif̃ = ∂|i|f̃
(∂x1)i1 ...(∂xn)in

for a function

f̃ from some open subset of Rn into R. Since a is arbitrary, we get that all the
partial derivatives up to order r of the components fp and gp coincide at ϕ(x).

♦

We can define the composition Jryg ◦ Jrxf ∈ Jrx(X,Z)z of r-jets Jrxf ∈
Jrx(X,Y )y and Jryg ∈ Jry (Y, Z)z by Jryg ◦ Jrxf = Jrx(g ◦ f). We show that this is
well defined. If we suppose that Jrxf = Jrx f̄ and Jrxg = Jrx ḡ, f(x) = y = f̄(x),
then we can write for the other representatives Jrx(g ◦ f) = Jrx(ḡ ◦ f̄). In fact,
Jrxf = Jrx f̄ means that f ◦ γ ∼r f̄ ◦ γ holds for every curve γ : R→X with
γ(0) = x. From this we immediately get ḡ ◦ f ◦ γ ∼r ḡ ◦ f̄ ◦ γ, but Jrxg = Jrx ḡ
yields g ◦ f ◦ γ ∼r ḡ ◦ f ◦ γ, thus g ◦ f ◦ γ ∼r ḡ ◦ f̄ ◦ γ holds for every curve
γ : R→X with γ(0) = x. Therefore we really get Jrx(g ◦ f) = Jrx(ḡ ◦ f̄) and the
composition of r-jets is well defined. An r-jet A ∈ Jrx(X,Y )y is called regular,
if there exists an r-jet B ∈ Jry (Y,X)x such that B ◦A = Jrx idX and A is called
invertible, if there exists an r-jet A−1 ∈ Jry (Y,X)x such that A−1 ◦A = Jrx idX
and A◦A−1 = Jry idY . We denote by inv Jr(X,Y ) the set of invertible r-jets ofX
into Y . It is not difficult to see (the proof is in [32]) that an r-jet X ∈ Jrx(X,Y )y
is regular if and only if each of its representatives is an immersion at the point x
and it is invertible if and only if each of its representatives is a local diffeo-
morphism at x. Let f : X→ X̄ be a local diffeomorphism, and g : Y → Ȳ be a
smooth map. Then there exists an induced map Jr(f, g) : Jr(X,Y )→ Jr(X̄, Ȳ )
defined by Jr(f, g)(A) = (Jrβ(A)g) ◦A ◦ (Jrα(A)f)−1.

A triple (Y, π,X), where π : Y →X is a surjective submersion, is called a
fibered manifold. Y is called the total space, X is called the base space,
π is called the projection. Since π is a surjective submersion, it is transversal
over x ∈ X, therefore π−1(x) is a submanifold of Y (see [36]), which is called the
fiber of Y over x and we sometimes write Yx instead of π−1(x). A morphism
of fibered manifolds (Y, π,X) and (Ȳ , π̄, X̄) is a smooth map f : Y → Ȳ
transforming each fiber of Y into a fiber of Ȳ , i.e. there exists a map f0 : X→ X̄
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such that the following diagram is commutative:

Y
f //

π

��

Ȳ

π̄

��
X

f0

// X̄

From the universal property of surjective submersion we get that f0 is smooth.
We denote the category of all fibered manifolds and their morphisms by FM and
by ΓY the set of smooth sections of Y . We denote by B the base functor from
the category of fibered manifolds into the category of manifolds B : FM→Mf ,
which sends every fiber manifold (Y, π,X) down to its base X and every fibered
manifold morphism f to f0. We denote by FMn the subcategory of fibered man-
ifolds with n-dimensional bases and morphisms of fibered manifolds with local
diffeomorphisms as base maps. We denote by Mfn the subcategory of Mf - the
category of manifolds and smooth mappings, where we consider n-dimensional
manifolds and local diffeomorphism.

Theorem 2.2. Let X and Y be smooth manifolds. There exists an induced
structure of smooth manifold on Jr(X,Y ) such that r-jet projections are smooth
surjective submersions, the composition of r-jets is smooth and Jr is a functor
Mfn ×Mf→FM.

Proof: Let (U,ϕ), ϕ = (xi) be a chart on X and let (V, ψ), ψ = (yp) be a
chart on Y . We set W = (πr,0)−1(U × V ) and put for each Jrxf ∈W

χ(Jrxf) = (xi ◦ α, yp ◦ β, ypi1 , y
p
i1i2

, . . . , ypi1i2...ir )(J
r
xf),

ypi1i2...ik(J
r
xf) = Di1Di2 . . . Dik(y

p ◦ f ◦ ϕ−1)(ϕ(x)),

where 1 ≤ k ≤ r, 1 ≤ p ≤ m = dim(Y ) and 1 ≤ i1 ≤ i2 ≤ · · · ≤ ir ≤ n =
dim(X). We show that χ : W →ϕ(U)× ψ(V )× RN is a bijection, where using
the combination with repetition we see that

N = m

((
n

1

)
+
(
n+ 1

2

)
+ · · ·+

(
n+ r − 1

r

))
= m

((
n+ r

n

)
− 1
)
.

It follows immediately from Theorem 2.1 (see the remark at the beginning of
its proof) that χ is injective. To show that it is surjective, choose a point
(x0 = (xi0), y0 = (yp0), P pi1 , P

p
i1i2

, . . . , P pi1i2...ir ) ∈ ϕ(U) × ψ(V ) × RN and define
P pj1j2...jk = P pi1i2...ik whenever (j1, j2, . . . , jk) is a permutation of (i1, i2, . . . , ik).
Now we can define a map f̃ = (f̃p) : Rn→Rm by

f̃p(x1, . . . , xn) = yp0 + P pj1(x
j1 − xj10 ) +

1
2!
P pj1j2(x

j1 − xj10 )(xj2 − xj20 ) . . .

+
1
r!
P pj1j2...jr (x

j1 − xj10 )(xj2 − xj20 ) . . . (xjr − xjr0 ).
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Putting f = ψ−1 ◦ f̃ ◦ ϕ, x = ϕ−1(x0) we obtain a smooth map such that
χ(Jrxf) = (x0, y0, P

p
i1
, P pi1i2 , . . . , P

p
i1i2...ir

). Therefore χ is really a bijection. Us-
ing the higher order chain rule we see that the chart changings are smooth
maps, further we see that the canonical projections look locally like a projec-
tions and so they are surjective submersions, specially this defines the structure
of a smooth fibered manifold on πr,0 : Jr(X,Y )→X × Y . The chart (W,χ)
on the manifold Jr(X,Y ) is said to be associated with the charts (U,ϕ) and
(V, ψ). Using the higher order chain rule again, we see that the coordinates of
a jet Jryg ◦ Jrxf depend polynomially on the coordinates of the jets Jryg, J

r
xf ,

therefore the composition of jets is smooth. Finally, since the composition of
jets is associative, we obtain a functor Jr : Mfn ×Mf→FM, which sends
a pair of manifolds (X,Y ) to a fibered manifold πr,0 : Jr(X,Y )→X × Y and
a pair of morphism (f, g) to an induced map Jr(f, g), which is obviously a
FM-morphism over (f, g).

♦

Example 2.1. If we define Lrn as the set of all invertible elements of Jr0 (Rn,Rn)0
with an operation on it given by the composition of jets Lrn×Lrn→Lrn, (A,B) 7→
A ◦ B, then Lrn is a Lie group called the r-th differential group or the r-th
jet group in dimension n. We can introduce the canonical coordinates
on Jr0 (Rn,Rn)0, and so on Lrn as previously by

api1i2...ik(J
r
0f) = Di1Di2 . . . Dikf

p(0),

where f = (fp) : Rn→Rn, 1 ≤ k ≤ r, 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n. In these
coordinates we have Lrn = {Jr0f ∈ Jr0 (Rn,Rn)0 : det api (J

r
0f) 6= 0}. Since the

mapping det ◦api : Jr0 (Rn,Rn)0→R is continuous, Jr0f ∈ Lrn has a neighborhood
on which this function is nonzero. We can unify all such neighborhoods to
prove that Lrn is open in Jr0 (Rn,Rn)0. This defines the structure of a smooth
manifold on Lrn. Our operation is associative, the r-jet Jr0 idRn is the unit,
every r-jet Jr0f ∈ Lrn has an inverse Jr0f |−1, where f | denotes a restriction of f
on some neighborhood on which f is a diffeomorphism. Thus Lrn is a group.
Theorem 2.2 implies that our operation is smooth, therefore Lrn is really a Lie
group. We remark that dimLrn = n

((
n+r
n

)
− 1
)

and L1
n can be identified with

the general linear group GL(n,R). Further the higher order chain rule (using
the same notation) implies that the group operation can be written in canonical
coordinates in the form

api1i2...is(J
r
0α◦Jr0β) =

s∑
k=1

∑
(I1,I2,...,Ik)

apj1j2...jk(J
r
0α)aj1I1(J

r
0β)aj2I2(J

r
0β) . . . ajkIk(J

r
0β).

Example 2.2. Similarly as in Theorem 2.2 (see [32] or [25]) it can be proved
that T rkX = Jr0 (Rk, X)→X is a fiber bundle and T rk : Mf→FM is a functor,
which is on morphisms given by T rk f(Jr0g) = Jr0 (f ◦ g). The elements of the
manifold T rkX are said to be the k-dimensional velocities of order r on X,
in short (k, r)-velocities.
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For every Lie group G with the multiplication µ : G×G→G, T rkG is also a
Lie group with the multiplication T rkµ : T rkG×T rkG→T rkG. We use the fact that
T rk preserves products, i.e. T rkG×T rkG ∼= T rk (G×G) with the identification given
by (Jr0f, J

r
0g) 7→ Jr0 (f, g). It is well defined, it is enough to use Theorem 2.1

and recall the following fact from differential calculus (see [12] or [36]): Let U
be open in the Banach space E and let fi : U→Fi (i = 1, . . . ,m) be continuous
maps into the Banach spaces Fi. Let f = (f1, . . . , fm) be the map of U into the
product of the Fi. Then f is of class Ck iff each fi is of class Ck, and in that
case Dkf = (Dkf1, . . . , D

kfm).
Analogously we define the space of all (k, r)-covelocities on X by T r∗k X =

Jr(X,Rk)0. T r∗k is a functor from Mfn, on morphisms given by T r∗k f(Jrxg) =
Jrf(x)(g◦f

−1) (where f−1 is constructed locally as in Example 2.1), into Lrn− bun-
dles (dim(X) = n). We show that α : T r∗k X→X is really a Lrn-bundle. We
observe that Rk induce the structure of a vector space in each fiber α−1(x).
Let {(Uα, ϕα)}α∈I be an atlas on X. We can define the local trivializations
φβ : α−1(Uβ)→Uβ × Jr0 (Rn,Rk)0 by φβ(Jrxf) = (α(Jrxf), Jr0 (f ◦ ϕ−1

β ◦ tϕβ(x))),
where we use the translation on Rn given by ta(b) = b+a for a, b ∈ Rn. For the
inverse map to φβ we have φ−1

β (x, Jr0g) = Jrx(g ◦ t−ϕβ(x) ◦ ϕβ). Thus we get

φα ◦ φ−1
β (x, Jr0g) = (x, Jr0 (g ◦ t−ϕβ(x) ◦ ϕβ ◦ ϕ−1

α ◦ tϕα(x)))

= (x, Jr0g ◦ Jr0 (t−ϕβ(x) ◦ ϕβ ◦ ϕ−1
α ◦ tϕα(x))).

We define the left action Lrn × Jr0 (Rn,Rk)0→ Jr0 (Rn,Rk)0 by l(Jr0h, y) = y ◦
(Jr0h)

−1. The left action as a composition of smooth maps is obviously smooth.
Further we set φαβ(x) = Jr0 (t−ϕα(x) ◦ ϕα ◦ ϕ−1

β ◦ tϕβ(x)), these φαβ are smooth.
Hence we get l(φαβ(x), Jr0g) = pr2 ◦φα◦φ−1

β (x, Jr0g) and {φαβ}α,β∈I is a cocycle
of transition functions for the Lrn-bundle α : T r∗k X→X.

Example 2.3. The set F rX of all r-jets with source 0 of the local diffeomor-
phism of Rn intoX is called the frame bundle of order r ofX. So an r-frame
at x ∈ X is an invertible (n, r)-velocity at a point x. We show that F rX is a
principal fiber bundle with structure group Lrn. The r-th differential group Lrn
acts smoothly on F rX on the right by jet composition, i.e. we have the right
action r : F rX × Lrn→F rX, (u,A) 7→ u ◦ A. Since u is an invertible jet, we
can act by u−1 on the equation u ◦ A = u ◦ B with u ∈ F rX and A,B ∈ Lrn,
then A = B and the right action is free. As in Example 2.1 we can prove
that F rX is open in T rnX, which defines a structure of fiber manifold (bun-
dle) on β : F rX→X. Further for every Jr0φ, J

r
0ψ ∈ β−1(x), x = β(u) in the

same fiber of β : F rX→X there is a unique element Jr0 (φ−1 ◦ ψ) ∈ Lrn satis-
fying (Jr0φ) ◦ (Jr0 (φ−1 ◦ ψ)) = Jr0ψ, thus r is transitive on fibers, hence we get
β−1(x) ⊂ orb(u). Since we have β(u) = β(u ◦ A), we obtain β−1(x) ⊃ orb(u).
Thus β−1(x) = orb(u), i.e. the orbits of the right action are exactly the fibers
β−1(x) of F rX. Therefore we can apply the following Theorem (see [25]) to
prove that (F rX,β,X,Lrn) is really a principal bundle:

Theorem 2.3. Let p : P →X be a fibered manifold, and let G be a Lie group
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which acts freely on P from the right such that the orbits of the action are exactly
the fibers p−1(x) of P . Then (P, p,X,G) is a principal fiber bundle.

Every local diffeomorphism f : X→Y induces a map F rf : F rX→F rY by
F rf(Jr0φ) = Jr0 (f ◦φ). We denote the category of principal G-bundles and their
homomorphisms by PB(G). Since for Jr0α ∈ Lrn we have

F rf(Jr0φ ◦ Jr0α) = Jr0 (f ◦ φ ◦ α) = Jr0 (f ◦ φ) ◦ Jr0 (α) = F rf(Jr0φ) ◦ Jr0 (α),

F rf is a smooth Lrn-equivariant mapping and F r : Mfn→PB(Lrn) is a functor.

Example 2.4. Let π : Y →X be a fibered manifold, dimX = n, dimY = n+m.
The set JrY of all r-jets of the local sections of Y will be called the r-jet
prolongation of Y . We see that an element v ∈ Jrx(X,Y ) belongs to JrY if
and only if (Jrβ(v)π) ◦ v = Jrx idX . If we use the associated chart (W,χ) (as in
the proof of Theorem 2.2), then we see that for Jrxs ∈ JrY ∩W , 1 ≤ i ≤ n and
1 ≤ j1 ≤ j2 ≤ · · · ≤ jr ≤ n we have

yij(J
r
xs) = δij , y

i
j1j2(J

r
xs) = 0, . . . , yij1j2...jr (J

r
xs) = 0,

because the local section s satisfies yi ◦ s = xi. Therefore JrY is a submanifold
of Jr(X,Y ). If there exist a fiber chart (V, ψ), ψ = (xi, yp) on Y , then for
any multiindex j, 0 ≤ |j| ≤ r of range n ((πr,0)−1(V ), (xi, ypj )) is a fiber chart
on JrY , where we denote by the same letter the restriction πr,0 : JrY → J0Y
of the canonical projection. For every section s of π : Y →X, the r-jet prolon-
gation Jrs of s is a section of α : JrY →X.

Let π̄ : Ȳ → X̄ be another fibered manifold and f : Y → Ȳ be an FM-
morphism with the property that the base map f0 : X→ X̄ is a local diffeo-
morphism. Then the induced map constructed before Theorem 2.2 Jr(f0, f) :
Jr(X,Y )→ Jr(X̄, Ȳ ), i.e. Jr(f0, f)(Jrxs) = Jrf0(x)(f ◦ s ◦ f

−1
0 ), transforms JrY

into JrȲ . In fact, v = Jrxs ∈ JrY , is characterized by (Jrβ(v)π) ◦ v = Jrx idX and
since FM-morphism f satisfies π̄ ◦ f = f0 ◦ π, we get

(Jrβ(Jr(f0,f)(Jrxs))
π̄) ◦ Jr(f0, f)(Jrxs) = (Jrf◦β(v)π̄) ◦ (Jrβ(v)f) ◦ v ◦ (Jrf0(x)f

−1
0 )

= (Jrπ◦β(v)f0) ◦ (Jrβ(v)π) ◦ v ◦ (Jrf0(x)f
−1
0 ) = (Jrxf0) ◦ (Jrx idX) ◦ (Jrf0(x)f

−1
0 )

= Jrf0(x)idX̄ ,

thus we indeed have Jr(f0, f)(Jrxs) ∈ JrȲ . We denote the restricted map by
Jrf : JrY → JrȲ and it is called the r-jet prolongation of f and we denote the
corresponding functor by the same symbol Jr : FMn→FM as the bifunctor Jr

before.

Example 2.5. We can consider all at once. Let (P, p,X,G) be a principal
bundle. For s ≥ r we can define the principal prolongation of order (s, r)
of Lie group G as the semidirect product of Lie groupsW s,r

n G = LsnoT rnG with
respect to the right action r : T rnG×Lsn→T rnG given by the composition of jets
r(Jr0a, J

s
0α) = Jr0a◦πs,r(Js0α). The multiplication in a semidirect productHoK
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of groups H and K with respect to a right action r of H on K is given by
(h1, k1)(h2, k2) = (h1h2, rh2(k1)k2).

We recall that in any category, the fiber product or pullback of two
morphisms f1 : Y1→X and f2 : Y2→X over X consist of an object Y1 ×X Y2

and two morphisms p1 : Y1 ×X Y2→Y1 and p2 : Y1 ×X Y2→Y2 such that
f1◦p1 = f2◦p2, and satisfying the universal mapping property: Given an object
S and two morphisms g1 : S→X and g2 : S→Y such that f1 ◦ g1 = f2 ◦ g2,
there exists a unique morphism g : S→Y1×X Y2 making the following diagram
commutative:

S
g2

&&
g1

  

g
IIII

$$I
III

Y1 ×X Y2

p1

��

p2 // Y2

f2

��
Y1

f1 // X

We sometimes say that p1 is the pullback of f2 by f1 and also write it as f∗1 (f2)
and similarly we write Y1 ×X Y2 as f∗1 (Y2). So the pullback (Y1 ×X Y2, p1, p2)
is not determined uniquely but only up to a ”unique isomorphism which makes
everything commute”. If f1 : Y1→X and f2 : Y2→X are transversal morphisms
in the category of manifolds, then Y1 ×X Y2 = (f1 × f2)−1(∆X)(= {(y1, y2) ∈
Y1 × Y2 : f(y1) = g(y2)}) (∆X is the diagonal of X × X) together with the
morphisms into Y1 and Y2 obtained from the projections, is a fiber product of
f1 and f2 over X (see [36]).

Now (W s,rP,X, p̃,W s,r
n G) = (F sX ×X JrP,X, p̃, Lsn o T rnG) is called the

gauge natural prolongation of order (s, r) of the principal bundle P
or (s, r)-th principal prolongation of the principal bundle P . Here the
projection p̃(Js0 ε, J

r
xσ) = x is a surjective submersion. We have the free right

action of W s,r
n G on W s,rP given by (Js0 ε, J

r
xσ) · (Js0α, Jr0a) = (Js0 (ε ◦ α), Jrx(σ ·

(a ◦ α−1 ◦ ε−1))), where · on the right hand side denotes the right action of G
on P . Indeed, we can write the right action of W s,r

n G on W s,rP shortly in the
form (u, v) · (A,B) = (u ◦ A, v · (B ◦ πs,r(A−1 ◦ u−1))), u ∈ F sX, v ∈ JrP ,
A ∈ Lsn, B ∈ T rnG and now · on the right hand side is the induced map from
the right action ρ of G on P given by

JrP ×X Jr(X,G)→ JrP, (Jrxσ, J
r
xs) 7→ Jrxσ · Jrxs = Jrx(ρ ◦ (σ, s)). (2.3)

We see that (Jrxσ · Jrxs) · Jrxt = Jrxσ · Jrx(µ ◦ (s, t)), where µ is the multiplication
in G, we can write this equation shortly in the form (v · S) · T = v · (ST ),
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v = Jrxσ ∈ JrP , S = Jrxs, T = Jrxt ∈ Jr(X,G). The computation

(u, v) · ((A,B)(C,D)) = (u, v) · (A ◦ C, rC(B)D)

= (u ◦A ◦ C, v · (rC(B)D ◦ πs,r((A ◦ C)−1 ◦ u−1)))

= (u ◦A ◦ C, v · (((B ◦ πs,r(C))D) ◦ πs,r(C−1 ◦A−1 ◦ u−1)))

= (u ◦A ◦ C, v · ((B ◦ πs,r(A−1 ◦ u−1))(D ◦ πs,r(C−1 ◦A−1 ◦ u−1))))

= (u ◦A ◦ C, (v · (B ◦ πs,r(A−1 ◦ u−1))) · (D ◦ πs,r(C−1 ◦ (u ◦A)−1)))

= (u ◦A, v · (B ◦ πs,r(A−1 ◦ u−1))) · (C,D) = ((u, v) · (A,B)) · (C,D)

shows that the action of W s,r
n G on W s,rP is really the right action. If we

suppose that (u, v) ·(A,B) = (u, v), i.e. (u◦A, v ·(B ◦πs,r(A−1 ◦u−1))) = (u, v),
then we get A = Js0 idRn , because u ∈ F sX is invertible. If we write v = Jrxσ,
B = Jr0 b, u = Js0 ε, then our assumption implies

Jrx(σ · (b ◦ ε−1)) = Jrxσ. (2.4)

Let U be a neighborhood of the point x ∈ X and ψ : p−1(U)→U × G a
diffeomorphism such that ψ(y · g) = ψ(y) · g for all y ∈ p−1(U) and g ∈ G,
and pr1 ◦ψ = p. Such a diffeomorphism exists, because P is a principal bundle.
Then we have

ψ(σ(x) · (b ◦ ε−1(x))) = ψ(σ(x)) · (b ◦ ε−1(x)) = (x, µ(pr2 ◦ψ(σ(x)), b ◦ ε−1(x)))

and so we obtain from (2.4) by applying Jrσ(x)(pr2 ◦ψ) from the left and Jr0 ε on
the right

Jr0 (pr2 ◦ψ ◦ σ ◦ ε) = Jr0 (µ ◦ (pr2 ◦ψ ◦ σ ◦ ε, b)) = T rnµ(Jr0 (pr2 ◦ψ ◦ σ ◦ ε), Jr0 b),

which is the multiplication in the group T rnG. Therefore B is the unit in T rnG
and the right action of W s,r

n G on W s,rP is in fact free. Moreover this right
action is transitive on fibers too. Indeed for (Js0 ε, J

r
xσ), (Js0 ε̃, J

r
xσ̃) ∈ p̃−1(x)

there exists (Js0α, J
r
0a) ∈W s,r

n G such that (Js0 ε̃, J
r
xσ̃) = (Js0 ε, J

r
xσ) · (Js0α, Jr0a),

we simply take (Js0α, J
r
0a) = (Js0 (ε−1◦ε̃), Jr0 (τ ◦(σ, σ̃)◦ε̃)), where τ : P×MP →G

is given by the implicit equation r(ux, τ(ux, u′x)) = u′x, where r is the principal
right action on P and ux, u

′
x ∈ p−1(x). 1 Now Theorem 2.3 implies that the

gauge natural prolongation (W s,rP,X, p̃,W s,r
n G) of order (s, r) of the principal

bundle P is a principal bundle too. We shortly denote W rP = W r,rP and
W r
nG = W r,r

n G for all r ∈ N.
We shall give another description of W r

nG and W rP . We shall deal with the
category PBn(G) consisting of principal bundles with n-dimensional bases and

1The mapping τ is well defined since the right action is free. We immediately get
τ(ux, ux) = e and from

r(ux · a, τ(ux · a, u′x · a′)) = u′x · a′ = r(r(ux, τ(ux, u′x)), a′)

= r(ux, τ(ux, u′x)a′) = r(ux · a, a−1τ(ux, u′x)a′)

we see that the mapping τ satisfies the equation τ(ux · a, u′x · a′) = a−1τ(ux, u′x)a′.
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fixed structure group G, with PBn(G)-morphisms which cover local diffeomor-
phisms between the base manifolds. So a PBn(G)-morphism ψ from (P, p,X,G)
into (P ′, p′, X ′, G) is a smooth fibered map over a local diffeomorphism ψ0 :
X→X ′ satisfying ψ ◦ρa = ρ′a ◦ψ for all a ∈ G, where ρ and ρ′ are the principal
right actions on P and P ′.

All PBn(G)-morphisms are local isomorphisms. Indeed, using some local
trivializations ψα and ψ′α′ on P and P ′ respectively we have

ψ′α′ ◦ ψ ◦ ψ−1
α (x, a) = ((ψ′α′ ◦ ψ ◦ ψ−1

α )0(x), (pr2 ◦ψ′α′ ◦ ψ ◦ ψ−1
α (x, e))a),

but (ψ′α′ ◦ ψ ◦ ψ−1
α )0 must be a local diffeomorphism and the left translation

through pr2 ◦ψ′α′ ◦ψ◦ψ−1
α (x, e) is a diffeomorphism, thus a PBn(G)-morphism ψ

is a local diffeomorphism. Locally for each u′ ∈ P ′ there exists one u ∈ P such
that ψ(u) = u′, hence we have

ψ−1(u′ · a) = ψ−1(ψ(u) · a) = ψ−1(ψ(u · a)) = u · a = ψ−1(ψ(u)) · a
= ψ−1(u′) · a

for each u′ in some open set in P ′ and for all a ∈ G. Since ψ−1 is fiber respecting
too, a PBn(G)-morphism ψ is really a local isomorphism.

We have a bijection between the set of PBn(G)-morphisms from Rn × G
into P and the set of pairs, which are formed by local diffeomorphisms and local
sections of P . To a PBn(G)-morphism ψ : Rn×G→P we associate a local diffeo-
morphism ψ0 and a local section ψ1 of P by the relation ψ(x, a) = (ψ1◦ψ0(x))·a,
i.e. ψ1(x′) = ψ(ψ−1

0 (x′), e) and from p ◦ ψ1(x′) = p ◦ ψ(ψ−1
0 (x′), e) = ψ0 ◦

pr1(ψ
−1
0 (x′), e) = x′ we see that ψ1 is in fact a local section of P . Anal-

ogously, every PBn(G)-automorphism φ : Rn × G→Rn × G is fully deter-
mined by its restriction φ1 : Rn→G, φ1(x) = pr2 ◦φ(x, e) and the underly-
ing map φ0 : Rn→Rn, i.e. we have φ(x, a) = (φ0(x), (φ1(x))a) (compare with
Equation (3.15)). Now we can consider the group of r-jets at (0, e) of all auto-
morphisms φ : Rn ×G→Rn ×G with φ0(0) = 0, where the multiplication µ is
defined by the composition of jets, i.e. µ(Jr(0,e)φ, J

r
(0,e)ψ) = Jr(0,e)(φ ◦ ψ). This

definition is correct. In fact, we have

Jr(0,φ1(0))
ρa ◦ Jr(0,e)φ = Jr(0,e)(ρa ◦ φ) = Jr(0,e)(φ ◦ ρa) = Jr(0,a)φ ◦ J

r
(0,e)ρa (2.5)

for all a ∈ G, where ρ now denotes the right action on Rn × G. But ρa is a
diffeomorphism, thus we get Jr(0,e)φ = Jr(0,e)φ̃ iff Jr(0,a)φ = Jr(0,a)φ̃. Hence for

Jr(0,e)φ = Jr(0,e)φ̃ and Jr(0,e)ψ = Jr(0,e)ψ̃ the computation

µ(Jr(0,e)φ̃, J
r
(0,e)ψ̃) = Jr(0,e)(φ̃ ◦ ψ̃) = Jr

(0,ψ̃1(0))
φ̃ ◦ Jr(0,e)ψ̃ = Jr(0,ψ1(0))

φ ◦ Jr(0,e)ψ

= µ(Jr(0,e)φ, J
r
(0,e)ψ)

shows that the map µ is well defined, further the composition of jets is smooth,
the unit is Jr(0,e)idRn×G and the inverse elements are the jets of inverse maps,
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which always exist locally. Therefore the multiplication µ is indeed correctly
defined. For every φ, ψ ∈ HomPBn(G)(Rn ×G,Rn ×G) we have

φ ◦ ψ(x, a) = φ(ψ0(x), (ψ1(x))a) = (φ0 ◦ ψ0(x), φ1(ψ0(x))(ψ1(x))a).

If we write (A,B) = (Jr0φ0, J
r
0φ1) ∈ W r

nG for the element corresponding to
jet Jr(0,e)φ and (C,D) = (Jr0ψ0, J

r
0ψ1) ∈W r

nG for the element corresponding to
jet Jr(0,e)ψ, then in this identification we get

µ((A,B), (C,D)) = (A ◦ C, (B ◦ C)D),

where on the right hand side in the second input we use the multiplication
in T rnG. If we compare this multiplication µ with the one on W r

nG defined pre-
viously, then we see that there is an isomorphism between the group considered
now and the principal prolongation W r

nG of Lie group G.
We can define the set {Jr(0,e)ψ ∈ J

r(Rn×G,P ) : ψ ∈ HomPBn(G)(Rn×G,P )}
and we denote it by the same symbol as the gauge natural prolongation W rP .
There is a bijection between Rn ×W r

nG and W r(Rn ×G)

Rn ×W r
nG 3 (x, Jr(0,e)φ) 7→ Jr(0,e)(τx ◦ φ) ∈W r(Rn ×G),

where we use the translation tx to define τx = tx × idG , with the inverse map
given by Jr(0,e)φ̃ 7→ (pr1 ◦φ̃(0, e), Jr(0,e)(τ

−1

pr1 ◦φ̃(0,e)
◦ φ̃)). Thus there is a structure

of smooth manifold on W r(Rn ×G). If we define the functor W r on PBn(G)-
morphisms as the composition of jets by W rχ(Jr(0,e)ψ) = Jr(0,e)(χ ◦ ψ), then
we can transform any principal bundle atlas on P to an atlas on W rP . The
right action of W r

nG on W rP is given again by jet composition, i.e. Jr(0,e)ψ ·
Jr(0,e)φ = Jr(0,e)(ψ ◦ φ), which is free and transitive on fibers (all jets are in-
vertible), therefore (W rP, p ◦ β,X,W r

nG) is a principal bundle. If we write
(u, v) = (Jr0ψ0, J

r
ψ0(0)

ψ1) ∈ W rP for the element corresponding to jet Jr(0,e)ψ
and (A,B) = (Jr0φ0, J

r
0φ1) ∈W r

nG for the element corresponding to jet Jr(0,e)φ,
then from the computation

ψ ◦ φ(x, a) = ψ(φ0(x), φ1(x)a) = (ψ1 ◦ ψ0 ◦ φ0(x)) · (φ1(x)a)

= (ρ ◦ (ψ1, φ1 ◦ φ−1
0 ◦ ψ−1

0 ) ◦ (ψ0 ◦ φ0)(x)) · a

(in such an identification) we get (u, v) · (A,B) = (u ◦ A, v · (B ◦ A−1 ◦ u−1)),
where · on the right hand side is as in (2.3). This corresponds to the right action
of W r

nG on W rP defined previously 2.
Finally we prove that P 7→ W s,rP for P ∈ Ob(PBn(G)), ψ 7→ W s,rψ =

(F sψ0, J
rψ) for ψ ∈ HomPBn(G)(P, P ′) is a functor PBn(G)→PBn(W s,r

n G).

2A similar construction using the concept (r, s, q)-jet can be done also for W s,rP . We say
that two maps f, g ∈ HomFM(Y, Y ′) determine the same (r, s, q)-jet at y ∈ Y , s, q ≥ r, if

Jr
yf = Jr

yg and Js
yf |Yx = Js

yg|Yx and Jq
xBf = Jq

xBg,

where Yx is the fiber, which contains y. Then W s,rP can be identified with the space of all
(r, r, s)-jets at (0, e) of a homomorphism f ∈ HomPBn(G)(Rn ×G, P ).
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The functoriality follows from W s,r = ×B( ) ◦ (F s ◦B, Jr). It remains to prove
that W s,rψ ∈ HomPBn(W s,r

n G)(W s,rP,W s,rP ′). The computation for u = Js0 ε ∈
F sX, v = Jrxσ ∈ JrP , A = Js0a ∈ Lsn, B = Jr0 b ∈ T rnG

W s,rψ((u, v) · (A,B)) = W s,rψ(u ◦A, v · (B ◦ πs,r(A−1 ◦ u−1)))

= (F sψ0(u ◦A), Jrψ(v · (B ◦ πs,r(A−1 ◦ u−1))))

= (Js0 (ψ0 ◦ ε ◦ a), Jrψ0(x)
(ψ ◦ (σ · (b ◦ a−1 ◦ ε−1)) ◦ ψ−1

0 ))

= (Js0 (ψ0 ◦ ε ◦ a), Jrψ0(x)
((ψ ◦ σ ◦ ψ−1

0 ) · (b ◦ a−1 ◦ ε−1 ◦ ψ−1
0 )))

= (F sψ0(u) ◦A, Jrψ(v) · (B ◦ πs,r(A−1 ◦ (F sψ0(u))−1)))
= (F sψ0(u), Jrψ(v)) · (A,B) = W s,rψ(u, v) · (A,B)

shows that W s,rψ is indeed a PBn(W s,r
n G)- morphism.

For every bundle P ×l Z associated to a principal bundle (P, p,X,G) there
is a canonical left action lr : W r

nG× T rnZ→T rnZ given by

lr(Jr(0,e)φ, J
r
0 s) = Jr0 (l ◦ (φ1 ◦ φ−1

0 , s ◦ φ−1
0 )), (2.6)

i.e. as the composition of the prolonged action T rnl : T rnG× T rnZ→T rnZ, which
is defined analogously as the multiplication in Example 2.2, and the canoni-
cal left action of Lrn on both T rnG and T rnZ. We denote by ×lZ the functor,
which associates to any principal fiber bundle homomorphism Φ : P →P ′ a
homomorphism [Φ, idZ ] = Φ×l Z : P ×l Z→P ′ ×l Z, [y, z] 7→ [Φ(y), z].

Theorem 2.4. There is an isomorphism Jr(P ×l Z) ∼= W rP ×lr T rnZ. In
this identification the correspondence P 7→ Jr(P ×l Z), Φ 7→ Jr([Φ, idZ ]) =
[F r◦B(Φ)×Jr(Φ), idT rnZ ] is a functor from PBn(G) to the subcategory of FMn,
which is formed by bundles associated to an r-th principal prolongation of a
principal G-bundle and their homomorphisms.

Proof: See [25], [34], [32].

♦

The functor from Theorem 2.4 is one example of the following concept.
A gauge natural bundle functor or G-natural bundle functor over n-
dimensional manifolds is a functor F : PBn(G)→FM such that:

1. every principal bundle p : P →BP from Ob(PBn(G)) is transformed into
a fibered manifold qP : FP →BP ,

2. every principal fiber bundle homomorphism f ∈ HomPBn(G)(P, P ′) is
transformed into a morphism of fibered manifolds Ff : FP →FP ′ over
Bf ,

3. for every open subset U ∈ BP , the inclusion i : p−1(U)→P is transformed
into the inclusion Fi : q−1

P (U)→FP .
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If F is a gauge natural bundle functor and (P, p,X,G) ∈ Ob(PBn(G)), then
qP : FP →X will be called a gauge natural bundle.

Example 2.6. A natural bundle functor over n-dimensional manifolds is a
functor F̄ : Mfn→FM such that:

1. B ◦ F̄ = IdMfn , i.e. the projections form a natural transformation p :
F̄ → IdMfn ,

2. if i : U→X is an inclusion of an open submanifold, then F̄U = p−1
X (U)

and F̄ i : p−1
X (U)→ F̄X is the inclusion.

From a natural bundle functor F̄ we simply obtain a gauge natural bundle
functor F by F = F̄ ◦ B. Conversely, the choice G = {e} makes from a gauge
natural bundle functor a natural bundle functor.

Example 2.7. The functor (×lS) ◦W r : PBn(G)→FM is a gauge natural
bundle functor.

An argument analogous to the one in Example 2.5 using (2.5) shows that
Jryf = Jryg for f, g ∈ HomPBn(G)(P, P ′) and y ∈ Px, x ∈ BP implies Jrz f = Jrz g
for all z ∈ Px in the fiber Px over x. In this case we write Jrxf = Jrxg and say
that f and g have the same fiber r-jet at x. A gauge natural bundle functor is
said to be of order r, if Jrxf = Jrxg implies Ff |FxP = Fg|FxP , where we denote
by FxP = (FP )x the fiber over x. A gauge natural bundle functor is said to be
regular, if every smoothly parametrized family of PBn(G)-morphisms

f : X→HomPBn(G)(P, P ′)

parametrized by a manifold X (i.e. the map X × P →P ′, (t, u) 7→ f(t)(u) is
smooth) is transformed into a smoothly parametrized family of fibered manifold
morphisms

F̃ f : X→HomFM(FP, FP ′)

(i.e. the map X × FP →FP ′, (t, v) 7→ F (f(t))(v) is smooth).

Theorem 2.5. For every r-th order regular gauge natural bundle functor F :
PBn(G)→FM there is a canonical structure of an associated bundle W rP ×lS
on FP given by a map bP and the values of the functor F in this identification
lie in the category of associated bundles and their homomorphisms, i.e. we have
the natural equivalence b : [W r, idS ]→F and the following diagram commutes:

W rP ×l S
bP //

[W rf,idS ]

��

FP

Ff

��
W rP ′ ×l S

bP ′ // FP ′
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Proof: First we define the associated maps FP,P ′ : inv Jr(P, P ′) ×BP
FP →FP ′ of the gauge natural bundle functor F by FP,P ′(Jrz f, y) = Ff(y).
This is well defined. Indeed, Jrz f = Jrz g with z ∈ Px implies Jrxf = Jrxg. Since
F is of order r, we have

FP,P ′(Jrz g, y) = Fg(y) = Fg|FxP (y) = Ff |FxP (y) = Ff(y) = FP,P ′(Jrz f, y)

and the associated maps of the gauge natural bundle functor F are really
well defined. To prove that these associated maps are smooth, it is suffi-
cient to restrict ourselves to P = P ′ = Rn+m. We consider the map ev :
inv Jr(Rn+m,Rn+m) × Rn+m→Rn+m given by ev(Jrz f, u) = f̃(u), where f̃ is
the canonical polynomial (as in the proof of Theorem 2.2), which corresponds
to Jrz f . We see that the map ev is well defined and smooth and by regularity
of F we get that F̃ ev is smooth too. The computation

(F̃ ev)|inv Jr(Rn+m,Rn+m)×RnRn+m(Jrz f, y) = F (evJrz f )(y) = F (f̃)(y)

= FRn+m,Rn+m(Jrz f̃ , y) = FRn+m,Rn+m(Jrz f, y)

shows that FRn+m,Rn+m is smooth, thus the associated maps are smooth.
Now we can define the smooth induced action of the r-th principal pro-

longation W r
nG of a Lie group G on the standard fiber S = F0(Rn ×G) by l =

FRn×G,Rn×G|W r
nG×S . The map bP : W rP ×l S→FP given by the factorization

of FRn×G,P |W rP×S through the surjective submersion q : W rP ×S→W rP ×lS
is well defined. In fact, we have

bP (Jr(0,e)ψ · J
r
(0,e)φ, l(J

r
(0,e)φ

−1, s)) = bP (Jr(0,e)(ψ ◦ φ), Fφ−1(s))

= F (ψ ◦ φ) ◦ Fφ−1(s) = Fψ(s) = bP (Jr(0,e)ψ, s).

for all Jr(0,e)ψ ∈W
rP , Jr(0,e)φ ∈W

r
nG and s ∈ S. From bP ◦q = FRn×G,P |W rP×S

we obtain by universal property of surjective submersion that bP is smooth.
The map FP,Rn×G|W rP×Fψ0(0)P (u−1, ) : Fψ0(0)P →S for u = Jr(0,e)ψ is the
inverse map to FRn×G,P |W rP×S(u, ) : S→Fψ0(0)P and we denote this diffeo-
morphism from a fiber of FP to the standard fiber S by cu. Then the map
b−1
P : FP →W rP ×l S, b−1

P (y) = [u, cu(y)] with u ∈ W r
qP (y)P is the inverse

map to bP . Locally for some section sα of pP : W rP →BP we can write
b−1
P (y) = [sα ◦ qP (y), csα◦qP (y)(y)], because from pP ◦ sα ◦ qP (y) = qP (y) we see

that sα ◦ qP (y) ∈W r
qP (y)P , therefore b−1

P is smooth and bP is a diffeomorphism.
This bP is the isomorphism W rP ×l S ∼= FP .

Finally the calculation

Ff ◦ bP ([Jr(0,e)ψ, s]) = Ff ◦ Fψ(s) = F (f ◦ ψ)(s) = bP ′([Jr(0,e)(f ◦ ψ), s])

= bP ′([W rf(Jr(0,e)ψ), s]) = bP ′ ◦ [W rf, idS ]([Jr(0,e)ψ, s])

finishes the proof.

♦
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It can be proved that every gauge natural bundle functor is regular (see [25]),
thus Theorem 2.5 says that every r-th order gauge natural bundle is of the form
as in Example 2.7. Quite similarly, using the concept of (r, s, q)-jets, it can be
proved that every gauge natural bundle functor of order (s, r) 3 is a fiber bundle
associated to W s,r. We will call a fiber bundle associated to W s,rP the gauge
natural bundle too.

Example 2.8. It is possible to introduce connections in several equivalent ways.
We will describe connections as sections of the first jet prolongation. We show
that the bundle of principal connections is a gauge natural bundle.

Consider the principal action r : P ×G→P on (P, p,X,G). Then we have
the canonical right action r̃ : J1P × G→ J1P, r̃(J1

xs, g) = J1
x(rg ◦ s). Then

a principal connection Γ on P can be considered as a G-equivariant section
Γ : P → J1P of the first jet prolongation β : J1P →P . In fact, from 4

r∗gΦ(ξu) = (Turg)−1(Turg · ξu − Γ(u · g) ◦ Tu(p ◦ rg) · ξu),
Φ(ξu) = (Turg)−1(Turg · ξu − r̃g ◦ Γ(u) ◦ Tup · ξu)

for g ∈ G and u ∈ P we see that the connection Φ considered as a vector valued
one form is principal (r∗gΦ = Φ holds for all g ∈ G) iff Γ is a G-equivariant
section of the first jet prolongation β : J1P →P . The bundle of principal
connections is defined as QP = J1P/G. Now we show that the sections of
QP are in bijection with the principal connections on P . The following two
theorems can be found in [25].

Theorem 2.6. The functor Q : PBn→FMn associates with each principal
fiber bundle (P, p,X,G) the fiber bundle QP over the base X with the standard
fiber J1

0 (Rn, G)e.The smooth sections of QP are in bijection with the principal
connections on P .

Proof: From the definition of r̃ we see that the source projection α : J1P →X
factors trough q : J1P → J1P/G to α̃ : J1P/G→X so that α = α̃ ◦ q. For
a homomorphism of principal bundles (φ, ϕ) : (P, p,X,G)→(P̄ , p̄, X̄, Ḡ) over a
homomorphism ϕ : G→ Ḡ the relation

J1φ(r̃g(J1
xs)) = J1

φ0(x)
(r̄ϕ(g) ◦ φ ◦ s ◦ φ−1

0 )

holds for all J1
xs ∈ J1P and g ∈ G. Hence the map Qφ : QP →QP̄ , [J1

xs] 7→
[J1φ(J1

xs)] is well defined. If we define a suitable smooth structure on QP

3As before Jr,r,s
y f = Jr,r,s

y g at a point y ∈ Px for f, g ∈ HomPBn(G)(P, P ′) implies

that Jr,r,s
y f = Jr,r,s

y g holds for all y ∈ Px and we write Jr,r,s
x f = Jr,r,s

x g. We say that
a gauge natural bundle functor F is of order (s, r), s ≥ r, if Jr,r,s

x f = Jr,r,s
x g implies

Ff |FxP = Fg|FxP .
4For a vector bundle (Y, π, X) we denote the space of Y -valued k-forms by Ωk(X; Y ) =

Γ(∧kT ∗X ⊗ Y ). If f : X→ X̄ is a local diffeomorphism, we can consider the pullback f∗ :
Ωk(X̄; TX̄)→Ωk(X; TX), given by

(f∗λ)x(ξ1, . . . , ξk) = (Txf)−1λf(x)(Txf · ξ1, . . . , Txf · ξk).
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than we have proved the first part of the theorem. Let us first assume P =
Rn × G. We have the identification J1(Rn × G) ∼= Rn × J1

0 (Rn, G), J1
xs 7→

(x, J1
0 (pr2 ◦s ◦ tx)). If we use a canonical representative in each orbit [J1

xs] with
s(x) = (x, e), e ∈ G being the unit, then we get the induced smooth structure
Q(Rn × G) ∼= Rn × J1

0 (Rn, G)e ∼= Rn × Rnm, dimG = m. Now we see that
q becomes a surjective submersion. From the universal property of surjective
submersions we see that α̃ is smooth. From the fact that the composition of
jets is smooth and using universal property of q again we see that Qφ is smooth
for every PBn-morphism φ : Rn×G→Rn× Ḡ. For every principal fiber bundle
atlas (Uα, φα) on (P, p,X,G) the charts (Uα, Qφα) form a fiber bundle atlas
on (QP, α̃,X, J1

0 (Rn, G)e). The functoriality of Q follows from the functoriality
of J1.

Now we prove the second part of the theorem. To each principal connection
Γ on P we associate a section S = q ◦ Γ ◦ s of QP , where s is an arbitrary
section of P . As a composition of smooth mappings S is smooth. Conversely,
to each section S of QP we associate a principal connection Γ on P defined by
Γ(u) = r̃g ◦ i ◦ S ◦ p(u) for each u ∈ P , where i is a map such that q ◦ i = idQP
and g ∈ G is given by the condition u = rg ◦ β ◦ i ◦ S ◦ p(u). Since we can
write Γ = r̃τ(β◦i◦S◦p(),idP ()) ◦ i ◦ S ◦ p, where τ was defined on p. 11, and the
surjective submersion q admits smooth sections, i.e. we can take a smooth i at
least locally, Γ is smooth too. These associations are inverse to each other.

♦

Now we show that the bundle of principal connections is a gauge natural
bundle of order 1. This is the special case of Theorem 2.5.

Theorem 2.7. QP ∼= W 1P ×l2 S, where S = (Q(Rn ×G))0 and the action l2
is given by l2 : W 1

nG× S→S, l2(J1
(0,e)φ, Y ) = Qφ(Y ).

Proof: From J1
(0,e)φ = J1

(0,e)φ̃ we see that J1
0φ

−1
0 = J1

0 φ̃
−1
0 so Qφ(Y ) =

[J1φ(J1
0 s)] = [J1

0 (φ◦s◦φ−1
0 )] = [J1

(0,e)φ◦J
1
0 s◦J1

0φ
−1
0 ] = [J1

(0,e)φ̃◦J
1
0 s◦J1

0 φ̃
−1
0 ] =

Qφ̃(Y ), where we take Y = J1
0 s with s(0) = (0, e), so l2 is well defined. Because

the composition of jets is smooth we see that l2 is smooth too. We see that
q : W 1P × S→QP, q(J1

(0,e)ψ, Y ) = Qψ(Y ) is well defined, moreover we can
factorize q to smooth q̃ : W 1P ×l2 S→QP . In fact, this is well defined, because
we have q̃([J1

(0,e)ψ · J
1
(0,e)φ, J

1
(0,e)φ

−1 · Y ]l2) = q(J1
(0,e)(ψ ◦ φ), Qφ−1(Y )) = Qψ ◦

Qφ ◦ Qφ−1(Y ) = Qψ(Y ) = q̃([J1
(0,e)ψ, Y ]l2) and it is smooth because of the

universal property of surjective submersions. Further q̃ is a bijection with the
inverse q̃−1(Y ) = [J1

(0,e)ψ,Qψ
−1(Y )]l2 for Y in a fiber chart (U,Qψ). From

q̃0 = idX and because q̃ looks in canonical local trivializations like the identity
we see that q̃ is an isomorphism.

♦

If we have more interactions and more matter particle species each corre-
sponding to some gauge natural bundle, then it is good to know that their fiber
product is a gauge natural bundle too, and what it looks like.
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Theorem 2.8. (W s1,r1P ×l1 S1) ×X (W s2,r2P ×l2 S2) ∼= W s,rP ×l (S1 × S2)
where r = max{r1, r2}, s = max{s1, s2} and l is induced by l1 and l2.

Proof: We define a map

b : (W s1,r1P ×l1 S1)×X (W s2,r2P ×l2 S2)→W s,rP ×l (S1 × S2),
([(Js10 ε1, J

r1
x σ1), f1]l1 , [(J

s2
0 ε2, J

r2
x σ2), f2]l2) 7→

[(Js0 ει(s), J
r
xσι(r)), (g

−1
1 ·l1 f1, g−1

2 ·l2 f2)]l

where ι(s) = i for s = si (i = 1, 2) and similarly for r, the gi’s are given by the
condition: there exists a unique gi ∈W si,ri

n G such that

πs,si × πr,ri(Js0 ει(s), J
r
xσι(r)) = (Jsi0 εi, J

ri
x σi) · gi

and the left action l is defined by formula

g ·l (f1, f2) = (π1(g) ·l1 f1, π2(g) ·l2 f2),

where πi are the homomorphisms πi : W s,r
n G→W si,ri

n G given by the canonical
projections, and since li are left actions, l is a left action too.

Now we prove that b is well defined. For another pair of representatives we
get

([(Js10 ε1, J
r1
x σ1) · h1, h

−1
1 ·l1 f1]l1 , [(J

s2
0 ε2, J

r2
x σ2) · h2, h

−1
2 ·l2 f2]l2) 7→

[(Js0 ει(s), J
r
xσι(r)) · h, (ḡ−1

1 ·l1 h−1
1 ·l1 f1, ḡ−1

2 ·l2 h−1
2 ·l2 f2)]l

for some h ∈W s,r
n G and from

(Jsi0 εi, J
ri
x σi) · gi · πih = πs,si × πr,ri(Js0 ει(s), J

r
xσι(r)) · πih

= πs,si × πr,ri((Js0 ει(s), J
r
xσι(r)) · h) = (Jsi0 εi, J

ri
x σi) · hi · ḡi

we get ḡi = h−1
i · gi · πih so

[(Js0 ει(s), J
r
xσι(r)) · h, (ḡ−1

1 ·l1 h−1
1 ·l1 f1, ḡ−1

2 ·l2 h−1
2 ·l2 f2)]l

= [(Js0 ει(s), J
r
xσι(r)) · h, (π1h−1 ·l1 g−1

1 ·l1 f1, π2h−1 ·l2 g−1
2 ·l2 f2)]l

= [(Js0 ει(s), J
r
xσι(r)) · h, h−1 ·l (g−1

1 ·l1 f1, g−1
2 ·l2 f2)]l

= [(Js0 ει(s), J
r
xσι(r)), (g

−1
1 ·l1 f1, g−1

2 ·l2 f2)]l.

So b is in fact well defined.
Now we prove that b is a bijection. We define a map

b−1 : W s,rP ×l (S1 × S2)→(W s1,r1P ×l1 S1)×X (W s2,r2P ×l2 S2),
[(Js0 ε, J

r
xσ), (f1, f2)]l 7→

([πs,s1 × πr,r1(Js0 ε, J
r
xσ), f1]l1 , [π

s,s2 × πr,r2(Js0 ε, J
r
xσ), f2]l2).
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b−1 is well defined because

[(Js0 ε, J
r
xσ) · h, h−1 ·l (f1, f2)]l 7→

([πs,s1 × πr,r1(Js0 ε, J
r
xσ) · π1h, (π1h)−1 ·l1 f1]l1 ,

[πs,s2 × πr,r2(Js0 ε, J
r
xσ) · π2h, (π2h)−1 ·l2 f2]l2)

= ([πs,s1 × πr,r1(Js0 ε, J
r
xσ), f1]l1 , [π

s,s2 × πr,r2(Js0 ε, J
r
xσ), f2]l2).

Immediately we see that b−1 ◦ b = id and b ◦ b−1 = id.
Finally we must prove that b is a bundle isomorphism. So b must be a

diffeomorphism and its projection on the base b0 must be a diffeomorphism and
the following diagram must be commutative:

(W s1,r1P ×l1 S1)×X (W s2,r2P ×l2 S2)
b //

p̄12

��

W s,rP ×l (S1 × S2)

p̄

��
X

b0 // X

From the definition of b we see that the diagram is commutative and b0 =
idX , so b0 is a diffeomorphism. We recall local trivializations, which we need.
Let φ−1

α : Uα ×W s,r
n G→ p−1(Uα) be given by φ−1

α (x, a) = sα(x) · a (similarly
for W si,riP with the corresponding indices i). Let ψ−1

α : Uα × S→ p̄−1(Uα) be
given by ψ−1

α (x, f) = [φ−1
α (x, e), f ]l, where we denote S = S1 × S2 (similarly

for W si,riP ×li Si with the corresponding indices i). Let for the fiber product
ψ−1

12α : Uα × S→ p̄−1
12 (Uα) be given by ψ−1

12α(x, f1, f2) = (ψ−1
1α (x, f1), ψ−1

2α (x, f2)).
If we consider the sections related by siα = πs,si×πr,ri◦sα, then the computation

ψα ◦ b ◦ ψ−1
12α(x, f1, f2) = ψα ◦ b([s1α(x), f1]l1 , [s2α(x), f2]l2)

= ψα([sα(x), f1, f2]l) = (x, f1, f2)

shows that b locally looks like idUα×S , so b is a local diffeomorphism, thus b is
a diffeomorphism, because we have proved that b is a bijection.

♦

2.2 Gauge Natural Operators

Let F and E be two gauge natural bundle functors over n-dimensional manifolds.
A gauge natural operator D : F →E is a system of regular operators DP :
ΓFP →ΓEP for all PBn(G)-objects p : P →BP such that

1. DP̄ (Ff ◦ s ◦ Bf−1) = Ef ◦ DP s ◦ Bf−1 for every section s ∈ ΓFP and
every PBn(G)-isomorphism f : P → P̄ ,

2. Dp−1(U)(s|U) = (DP s)|U for every section s ∈ ΓFP and every open subset
U ⊂ BP
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Here regular means that every smoothly parametrized family of sections is trans-
formed into a smoothly parametrized family of sections. If, moreover, for a
certain k ∈ N ∪∞ we find that for every x ∈ M , for every P and s, q ∈ ΓFP
the implication Jkxs = Jkx q ⇒ DP s(x) = DP q(x) holds, then we say that D is
of order k.

We present the following two theorems which can be found in [25], the proofs
are analogous to the proofs for natural bundles in [34].

Theorem 2.9. The k-th order gauge natural operators F →E are in canonical
bijection with the natural transformations JkF →E.

Proof: For every k-th order gauge natural operator D : F →E we define the
natural transformation D : JkF →E by DP : JkFP →EP,DP (Jkxs) = DP s(x).
By definition of the k-th order gauge natural operator we see that each DP is
well defined and smooth. We must prove that the following diagram:

JkFP

JkFf

��

DP // EP

Ef

��
JkFP̄

DP̄ // EP̄

(2.7)

commutes for all PBn(G)-morphism f : P → P̄ . In fact DP̄ ◦ JkFf(Jkxs) =
DP̄ (Ff◦s◦BFf−1)(BFf(x)) = Ef◦DP s◦Bf−1(Bf(x)) = Ef◦DP s(x) = Ef◦
DP (Jkxs). (Every PBn(G)-morphism is a local isomorphism and DP depends
only on germxs, so we can append restrictions, if necessary.)

Conversely, for every natural transformation D : JkF →E we define the
k-th order gauge natural operator by DP s(x) = DP (Jkxs). Because every DP
is a base preserving FM-morphism (Lemma 2.10) we see that DP ◦ Jks is a
section, evidently smooth. From DP̄ (Ff ◦ s ◦Bf−1)(Bf(x)) = DP̄ (JkBf(x)(Ff ◦
s ◦Bf−1)) = DP̄ ◦ JkFf(Jkxs) = Ef ◦ DP (Jkxs) = Ef ◦DP s(x) we get the first
condition on the gauge natural operator, the second can be seen at once. The
order is clear from definition.

♦

We denote the standard fibers of FP and EP by F0 = F0(Rn × G) and E0 =
E0(Rn × G). To each W r

nG-equivariant map f : F0→E0 we can associate the
FM-morphism fP which is given by fP ([ζ, u]) = [ζ, f(u)].

Lemma 2.10. Let Φ : FP →EP be a FM-morphism, then Eg ◦ Φ = Φ ◦ Fg
holds for each PBn(G)-morphism g : P →P iff there exists a unique W r

nG-
equivariant map f : F0→E0 such that fP = Φ.

Proof: Denote by pP (resp. pFP , resp. pEP ) the projection of the bundle
W rP (resp. FP , resp. EP ). From pEP ◦ Eg ◦ Φ = pEP ◦ Φ ◦ Fg we get
g0 ◦ Φ0 ◦ pFP = Φ0 ◦ g0 ◦ pFP so g0 ◦ Φ0 = Φ0 ◦ g0 for all PBn(G)-morphism
g : P →P and so Φ0 = idX . We define a map Φζ : F0→E0 by the relation
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Φ([ζ, u]) = [ζ,Φζ(u)] for any x ∈ X and ζ ∈ p−1
P (x). Φζ is independent of ζ over

x. In fact, W rg(ζ) = ζ · a for ζ = Jr(0,e)ψ, a = Jr(0,e)φ and g = ψ ◦ φ ◦ ψ−1 and
so [W rg(ζ),Φζ(u)] = Eg ◦ Φ([ζ, u]) = Φ ◦ Fg([ζ, u]) = [W rg(ζ),ΦW rg(ζ)(u)] =
[W rg(ζ),Φζ·a(u)], which implies Φζ = Φζ·a. By transitivity of the action of
W r
nG on W rP we get the independence of Φζ from the choice of ζ in the fiber

over x. Moreover, Φζ is independent of x. Choose a PBn(G)-morphism g
sending ζ1 over x1 to ζ2 over x2 then [W rg(ζ1),Φζ1(u)] = Eg ◦ Φ([ζ1, u]) =
Φ ◦ Fg([ζ1, u]) = [W rg(ζ1),Φζ2(u)], which implies Φζ1(u) = Φζ2(u). Now we
put f = Φζ . From [ζ, f(u)] = [ζ,Φζ(u)] = Φ([ζ, u]) = Φ([ζ · a−1, a · u]) = [ζ ·
a−1,Φζ(a·u)] = [ζ, a−1 ·f(a·u)] for all a ∈W r

nG we see that f(a·u) = a·f(u) and
so we get the W r

nG-equivariant map f : F0→E0 such that [ζ, f(u)] = Φ([ζ, u]).
The uniqueness and the converse implication are obvious.

♦

Theorem 2.11. Natural transformations F →E between two r-th order gauge
natural bundle functors over n-dimensional manifolds are in canonical bijection
with the W r

nG-equivariant maps F0→E0 between the standard fibers.

Proof: To each W r
nG-equivariant map f : F0→E0 we can associate the

natural transformation Df : F →E defined by Df : P 7→ fP for each bundle
P ∈ Ob(PBn(G)). From the equation fP̄ ◦ Fg([ζ, u]) = fP̄ ([W rg(ζ), u]) =
[W rg(ζ), f(u)] = Eg([ζ, f(u)]) = Eg ◦ fP ([ζ, u]) for all PBn(G)-morphisms g :
P → P̄ we see that Df is really a natural transformation.

Now we shall show that the correspondence f 7→ Df is bijective. Df1 = Df2

implies f1P = f2P for all P ∈ Ob(PBn(G)), by Lemma 2.10 we get f1 = f2
and so the correspondence is injective. For an arbitrary natural transformation
D : F →E and for fixed P there must exist by Lemma 2.10 a unique W r

nG-
equivariant map f : F0→E0 such that fP = DP . This f is independent of P .
In fact, suppose that fP1 = DP1 and f̄P2 = DP2 for some P1, P2 ∈ Ob(PBn(G)),
then f̄P2 ◦ Fg = Eg ◦ fP1 for any PBn(G)-morphism g : P1→P2, which implies
[W rg(ζ), f̄(u)] = f̄P2 ◦ Fg([ζ, u]) = Eg ◦ fP1([ζ, u]) = [W rg(ζ), f(u)] and so
f = f̄ , thus the correspondence is surjective.

♦



Chapter 3

Variational Theory on
Fibered Manifolds

Our main goal in this chapter is to discuss properties and under-
lying geometric structures needed in the general variational theory.
We focus our attention on the concepts which are necessary in the
Einstein-Yang-Mills theory. We prefer the notion of differential forms
for a Lagrangian defining a global variational functional. A global
characterization of extremals in terms of partial differential equations
is achieved with the help of the so called Lepage forms, allowing us to
express the variational derivatives in a coordinate-independent form.
We define a gauge natural structure of a gauge natural field theories.
We also discuss Noether’s theorem and the first variation formula for
the so called induced variations for a gauge natural Lagrangian.

3.1 The Lagrangian and the Action Function

Let π : Y →X be a fibered manifold with dimY = n+m over a n-dimensional
orientable base manifold X. If W ⊂ Y is an open set, we denote by Ωr0W the
ring of functions on W r = (πr,0)−1(W ); we denote by ΩrpW the Ωr0W -module of
differential p-forms on W r and the exterior algebra of forms on W r is denoted
by ΩrW . A differential p-form ρ on Y is said to be π-horizontal (or simply
horizontal), if for each point y ∈ Y the contraction iξρ(y) vanishes whenever
ξ is a vertical vector. The module of πr,0-horizontal (resp. πr-horizontal, where
πr = α is the source projection) p-forms on W r is denoted by Ωrp,YW (resp.
Ωrp,XW ).

23
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A Lagrangian of order r for a fibered manifold Y is a πr-horizontal n-
form λ on the open set W r of the r-jet prolongation JrY of Y , i.e. λ ∈ Ωrn,XW .
In a fiber chart (V, ψ), ψ = (xi, yσ) on Y a Lagrangian of order r defined on
V r can be expressed as λ = Lω0, where ω0 = dx1 ∧ dx2 ∧ · · · ∧ dxn and L :
V r→R is the so called Lagrange function associated with (V, ψ). From this
coordinate representation we see that a Lagrangian of order r can be considered
as a morphism λ̃ of fibered manifolds:

JrY

πr

��

λ̃ // ∧nT ∗X

zztttttttttt

X

But we shall prefer the notion of horizontal n-forms.
Let Ω ⊂ π(W ) be a compact, n-dimensional submanifold of X with bound-

ary. We denote by ΓΩ,W (Y ) the set of smooth sections of Y from Ω into W .
For a Lagrangian λ ∈ Ωrn,XW we define the so called action function (or the
variational function) λΩ : ΓΩ,W (Y )→R by λΩ(γ) =

∫
Ω
Jrγ∗λ. If ξ is a pro-

jectable vector field on an open set W , i.e. if there exists a vector field ξ0 on
π(W ) such that ξ and ξ0 are π-related (Tπ ◦ ξ = ξ0 ◦ π), then we have for their
flows π ◦ Flξt = Flξ0t ◦ π. We define the variation (or the deformation) of the
section γ ∈ ΓΩ,W (Y ) induced by the vector field ξ by γt = Flξt ◦ γ ◦ (Flξ0t )−1.
From the computation on the domain of γt

π ◦ γt = π ◦ Flξt ◦ γ ◦ (Flξ0t )−1 = Flξ0t ◦ π ◦ γ ◦ (Flξ0t )−1

= Flξ0t ◦ (Flξ0t )−1 = id

we see that the variation is a 1-parameter family of sections of Y . We say that
a section γ ∈ ΓΩ,W (Y ) is a stable point of the variational function λΩ with
respect to its variation induced by the vector field ξ, if(

d

dt
λ

Fl
ξ0
t (Ω)

(γt)
)

0

= 0. (3.1)

For a projectable vector field ξ on Y we can define a vector field Jrξ on JrY
- the so called r-jet prolongation of ξ by Jrξ(Jrxγ) = d

dt

∣∣
0
Jr(Flξt )(Jrxγ) for

each Jrxγ belonging to the domain of Jr(Flξt ). Then using the Lie derivative ∂,
Equation (3.1) is equivalent to

(∂Jrξλ)Ω(γ) = 0. (3.2)
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In fact, this follows from the computation(
d

dt
λ

Fl
ξ0
t (Ω)

(γt)
)

0

=

(
d

dt

∫
Fl
ξ0
t (Ω)

(Jr(Flξt ◦ γ ◦ (Flξ0t )−1))∗λ

)
0

=

(
d

dt

∫
Fl
ξ0
t (Ω)

(JrFlξt ◦ Jrγ ◦ (Flξ0t )−1))∗λ

)
0

=

(
d

dt

∫
Fl
ξ0
t (Ω)

(Flξ0t )−1∗ ◦ Jrγ∗ ◦ (JrFlξt )
∗λ

)
0

=
(
d

dt

∫
Ω

Jrγ∗ ◦ (JrFlξt )
∗λ

)
0

=
∫

Ω

Jrγ∗
(
d

dt
(JrFlξt )

∗λ

)
0

=
∫

Ω

Jrγ∗
(
d

dt
(FlJ

rξ
t )∗λ

)
0

=
∫

Ω

Jrγ∗∂Jrξλ = (∂Jrξλ)Ω(γ).

We call the variational function (∂Jrξλ)Ω : ΓΩ,W (Y )→R (associated with the
Lagrangian ∂Jrξλ) the variational derivative or the first variation of the
variational function λΩ by the vector field ξ.

Let ρ be a differential k-form on JrY . Then there exists one and only one
πr-horizontal k-form hρ on Jr+1Y such that

Jrγ∗ρ = Jr+1γ∗hρ (3.3)

for all sections γ of Y . To prove the existence we set hρ(Jr+1
x γ) = πr+1∗ ◦

Jrγ∗ρ(Jr+1
x γ) which satisfies Equation (3.3). The uniqueness for k = 0 and

k ≥ n is evident and for 1 ≤ k ≤ n in a fiber chart (V, ψ), ψ = (xi, yσ) on Y we
can write hρ as ρi1i2...ikdx

i1 ∧ dxi2 ∧ · · · ∧ dxik , so the condition Jr+1γ∗hρ = 0
for all γ implies ρi1i2...ik = 0, thus hρ is unique. The mapping ΩrkW 3 ρ→hρ ∈
Ωr+1
k W is called the horizontalization. The horizontalization considered as a

morphism of exterior algebras ΩrW 3 ρ→hρ ∈ Ωr+1W is a unique R-linear,
exterior product preserving mapping such that for any function f : W r→R and
any fiber chart (V, ψ), ψ = (xi, yσ) in W

hf = f ◦ πr+1,r, h(df) = dif dx
i, dif =

∂f

∂xi
+

∑
j1≤j2≤···≤jk

∂f

∂yσj1j2...jk
yσj1j2...jki,

(3.4)

where 0 ≤ k ≤ r. This follows directly from the definitions and the uniqueness
follows from

hdxi = dxi, hdyσj1j2...jk = yσj1j2...jkidx
i,

which we obtained from (3.4). The function dif : V r+1→R is called the i-th
formal derivative of f with respect to the fiber chart (V, ψ).

Similarly we define the horizontalization of tangent vectors as a vector
bundle morphism h : TJr+1Y →TJrY over πr+1,r by the formula hξ = TxJ

rγ ◦
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Tπr+1 · ξ for ξ ∈ TJr+1
x γJ

r+1Y . We call hξ the horizontal component of ξ
and pξ = Tπr+1,r · ξ − hξ the contact component of ξ. For ρ ∈ ΩrqW and
vectors ξ1, ξ2, . . . , ξq tangent to Jr+1Y at a point Jr+1

x γ ∈ W r+1 we define the
k-contact component pkρ of the form ρ by

pkρ(Jr+1
x γ)(ξ1, ξ2, . . . , ξq) =

∑
j1<j2<···<jk

∑
jk+1<jk+2<···<jq

εj1j2...jkjk+1jk+2...jqρ(Jrxγ)(pξj1 , pξj2 , . . . , pξjk , hξjk+1 , . . . , hξjq ).

It is convenient to write hρ = p0ρ and pρ =
∑q
i=1 piρ and extend the definition

to functions; for f : W r→R we define hf = πr+1,r∗f and pf = 0. Now we
have the canonical decomposition πr+1,r∗ρ = hρ + pρ into the horizontal
component hρ of ρ, which agrees with the horizontalization defined before, and
into the contact component pρ of ρ. A q-form ρ ∈ ΩrqW is called contact, if
hρ = 0, and k-contact, if πr+1,r∗ρ = pkρ. From

hρ(Jr+1
x γ)(ξ1, ξ2, . . . , ξq) = (Jrγ∗ρ)(x)(Tπr+1 · ξ1, Tπr+1 · ξ2, . . . , Tπr+1 · ξq)

we see that ρ is contact if and only if Jrγ∗ρ = 0 for every smooth section γ
of Y defined on an open subset of W . This implies that contact forms form an
ideal in ΩrW - the so called contact ideal. Further it can be proved that ρ
is horizontal if and only if pρ = 0 and that the forms p1ρ, . . . , pqρ are contact
(see [30]). If (V, ψ), ψ = (xi, yσ) is a fiber chart on Y , then the forms

dxi, ησJ = dyσJ − yσJjdx
j , dyσI ,

for multiindices 0 ≤ |J | ≤ r − 1 and |I| = r form a basis of linear forms on the
set V r, furthermore the 1-forms ησJ are contact.

A differential form Θ ∈ ΩsnW is called Lepage form, if for each πs,0-vertical
vector field ξ on W s we have hiξdΘ = 0. A Lepage form Θλ is called a Lepage
equivalent of a Lagrangian λ ∈ Ωrn,XW if hΘλ = λ (possibly up to a jet
projection, i.e. we denote a form on some jet prolongation and its pullback
by a jet projection by the same symbol). If we define the variational function
ΘλΩ : ΓΩ,W (Y )→R for a Lepage equivalent of a Lagrangian λ by the same rule
as before for a Lagrangian, then their variational functions are the same. In
fact, for a Lepage equivalent Θλ ∈ Ωr−1

n W we have

ΘλΩ(γ) =
∫

Ω

Jr−1γ∗Θλ =
∫

Ω

Jrγ∗hΘλ =
∫

Ω

Jrγ∗λ = λΩ(γ).

Theorem 3.1. For each Lagrangian λ ∈ Ω2
n,XW there exists a Lepage equiv-

alent Θλ ∈ Ω3
nW such that in any fiber chart (V, ψ), ψ = (xi, yσ) (V ⊂ W ) it

has the form

Θλ = Lω0 +

(
∂L
∂yσi

− dp
∂L
∂yσpi

)
ησ ∧ ωi +

∂L
∂yσji

ησj ∧ ωi, (3.5)

where λ = Lω0 and ωi = i ∂

∂xi
ω0 is a contraction of ω0.
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Proof: We search for a form Θλ with undetermined coefficients f iσ , f ijσ , such
that in any fiber chart Θλ = Lω0 + (f iση

σ + f ijσ η
σ
j )∧ωi. If we consider different

fiber coordinates (x̄i, ȳσ), then in the obvious shorthand notation we have the
following transformation rules for the jet coordinates

ȳσi =
(
∂ȳσ

∂xj
+
∂ȳσ

∂yν
yνj

)
∂xj

∂x̄i

ȳσi1i2 =
∂2ȳσ

∂xj1∂xj2
∂xj1

∂x̄i1
∂xj2

∂x̄i2
+

∂2ȳσ

∂yν∂xj2
yνj1

∂xj1

∂x̄i1
∂xj2

∂x̄i2
+
∂ȳσ

∂yν
yνj1j2

∂xj1

∂x̄i1
∂xj2

∂x̄i2
+(

∂ȳσ

∂xj1
+
∂ȳσ

∂yν
yνj1

)
∂2xj1

∂x̄i1∂x̄i2
+

∂2ȳσ

∂xj1∂yν
yνj2

∂xj1

∂x̄i1
∂xj2

∂x̄i2
+

∂2ȳσ

∂yν∂yρ
yνj1y

ρ
j2

∂xj1

∂x̄i1
∂xj2

∂x̄i2
.

Thus for the contact forms we get

η̄σ = dȳσ − ȳσj dx̄
j =

∂ȳσ

∂xj
dxj +

∂ȳσ

∂yρ
dyρ −

(
∂ȳσ

∂xk
+
∂ȳσ

∂yν
yνk

)
∂xk

∂x̄j
∂x̄j

∂xi
dxi

=
∂ȳσ

∂xj
dxj +

∂ȳσ

∂yρ
dyρ −

(
∂ȳσ

∂xi
+
∂ȳσ

∂yν
yνi

)
dxi =

∂ȳσ

∂yν
(dyν − yνi dx

i) =
∂ȳσ

∂yν
ην

η̄σj = dȳσj − ȳσjidx̄
i =

[(
∂ȳσ

∂xj1∂xk
+

∂ȳσ

∂yν∂xk
yνj1

)
∂xj1

∂x̄j

+
(
∂ȳσ

∂xj1
+
∂ȳσ

∂yν
yνj1

)
∂2xj1

∂x̄j∂xk

]
dxk +

[(
∂ȳσ

∂xj1∂yρ
+

∂ȳσ

∂yν∂yρ
yνj1

)
∂xj1

∂x̄j

]
dyρ

+
∂ȳσ

∂yρ
∂xk

∂x̄j
dyρk −

[
∂2ȳσ

∂xj1∂xk
∂xj1

∂x̄j
+

∂2ȳσ

∂yν∂xk
yνj1

∂xj1

∂x̄j
+
∂ȳσ

∂yν
yνj1k

∂xj1

∂x̄j

+
(
∂ȳσ

∂xj1
+
∂ȳσ

∂yν
yνj1

)
∂2xj1

∂x̄j∂x̄i
∂x̄i

∂xk
+

∂2ȳσ

∂xj1∂yν
yνk
∂xj1

∂x̄j
+

∂2ȳσ

∂yν∂yρ
yνj1y

ρ
k

∂xj1

∂x̄j

]
dxk

=
∂ȳσ

∂yρ
∂xk

∂x̄j
(dyρk − yρkldx

l) +
(

∂ȳσ

∂xj1∂yρ
+

∂ȳσ

∂yν∂yρ
yνj1

)
∂xj1

∂x̄j
(dyρ − yρkdx

k)

=
∂ȳσ

∂yρ
∂xk

∂x̄j
ηρk + dj1

∂ȳσ

∂yρ
∂xj1

∂x̄j
ηρ =

∂ȳσ

∂yρ
∂xk

∂x̄j
ηρk + d̄j

∂ȳσ

∂yρ
ηρ,

where in the last equality we used the fact that if (V̄ , ψ̄), ψ̄ = (x̄i, ȳσ) is another
fiber chart on Y such that V ∩ V̄ 6= ∅ and d̄i the i-th formal derivative with
respect to this fiber chart, then for any function f : V ∩ V̄ →R we have d̄if =
djf

∂xj

∂x̄i .
Now we can split f ijσ = f

(ij)
σ +f [ij]

σ into a symmetric f (ij)
σ and an antisymmet-

ric f [ij]
σ part. But using the transformation rule for η̄σj and the transformation

rule ω̄i = ∂xj

∂x̄i Jωj where J = det ∂x̄
j

∂xi is a Jacobian we see that only the sym-
metric term ∂ȳσ

∂yρ
∂xk

∂x̄j
∂xl

∂x̄i J(ηρk ∧ωl+ηρl ∧ωk) contributes to the transformation of
the symmetric term η̄ρk ∧ ω̄l+ η̄ρl ∧ ω̄k and similarly for the antisymmetric terms.
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Thus we can take the antisymmetric part f [ij]
σ to be zero and we assume that

f ijσ = f jiσ . This condition and what follows prove the global existence of Θλ.
The condition hΘλ = λ is satisfied. For any vector field

ξ = ξi
∂

∂xi
+ ξσ

∂

∂yσ
+ ξσj

∂

∂yσj
+ ξσjk

∂

∂yσjk
(3.6)

we compute what the condition on Θλ to be a Lepage form requires (using the
fact that dxj ∧ ωi = δjiω0):

hiξdΘλ = hiξ(dL ∧ ω0 + (df iσ ∧ ησ + df ijσ ∧ ησj ) ∧ ωi − (f iση
σ
i + f ijσ η

σ
ij) ∧ ω0)

= (iξdL − ξidiL − iξη
σdif

i
σ − iξη

σ
j dif

ij
σ − f iσiξη

σ
i − f ijσ iξη

σ
ij)ω0

=

(
∂L
∂yσ

(ξσ − yσj ξ
j) +

∂L
∂yσi

(ξσi − yσikξ
k) +

∂L
∂yσij

(ξσij − yσijkξ
k)

−(ξσ − yσj ξ
j)dif iσ − (ξσj − yσjkξ

k)dif ijσ − f iσ(ξ
σ
i − yσikξ

k)− f ijσ (ξσij − yσijkξ
k)

)
ω0

=

((
∂L
∂yσ

− dif
i
σ

)
(ξσ − yσj ξ

j) +
(
∂L
∂yσi

− djf
ji
σ − f iσ

)
(ξσi − yσikξ

k)

+

(
∂L
∂yσij

− f ijσ

)
(ξσij − yσijkξ

k)

)
ω0.

Thus we get

f ijσ =
∂L
∂yσij

, f iσ =
∂L
∂yσi

− dp
∂L
∂yσpi

(3.7)

and we obtain Equation (3.5).

♦

The Lepage equivalent from Theorem 3.1 is called the principal Lepage equiv-
alent and it generalizes the Poincaré-Cartan form Θλ = Lω0 + ∂L

∂yσi
ησ ∧ ωi of a

first order Lagrangian λ ∈ Ω1
n,XW expressed in a fiber chart by λ = Lω0. For

higher order generalizations see [30]. It can be shown that the principal Lepage
equivalent of the Hilbert Lagrangian is of first order (see [35]).

For a Lepage equivalent Θλ ∈ Ωr−1
n W of a Lagrangian λ ∈ Ωrn,XW the Lie

derivative ∂Jrξλ can be expressed by the first variation formula

∂Jrξλ = hiJr−1ξdΘλ + hdiJr−1ξΘλ. (3.8)

In fact, we have

∂Jrξλ = ∂Jrξ(hΘλ) = h∂Jr−1ξΘλ = hiJr−1ξdΘλ + hdiJr−1ξΘλ.
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Thus for the first variation of the variational function λΩ by the vector field ξ
we get

(∂Jrξλ)Ω(γ) =
∫

Ω

Jrγ∗∂Jrξλ =
∫

Ω

Jrγ∗(hiJr−1ξdΘλ + hdiJr−1ξΘλ)

=
∫

Ω

Jr−1γ∗iJr−1ξdΘλ +
∫

Ω

Jr−1γ∗diJr−1ξΘλ

=
∫

Ω

Jr−1γ∗iJr−1ξdΘλ +
∫
∂Ω

Jr−1γ∗iJr−1ξΘλ.

This is called the integral first variation formula. It shows the role of Lepage
forms in deriving such a decomposition of the n-form ∂Jrξλ into two terms, the
first of which depends only on ξ and on the Lagrangian and it corresponds to
the Euler-Lagrange expressions, and the second one only on the values of Jr−1ξ
on the boundary ∂Ω of Ω and on the choice of the Lepage equivalent.

Theorem 3.2. For the principal Lepage equivalent from Theorem 3.1 the Euler-
Lagrange term has a chart expression

hiξdΘλ =

(
∂L
∂yσ

− di

(
∂L
∂yσi

− dp
∂L
∂yσpi

))
(ξσ − yσj ξ

j)ω0

(ξ is as in Equation (3.6)) and the boundary term has a chart expression

hdiξΘλ = di

(
Lξi +

(
∂L
∂yσi

− dp
∂L
∂yσpi

)
(ξσ − yσk ξ

k) +
∂L
∂yσij

(ξσj − yσjkξ
k)

)
ω0.

Proof: The Euler-Lagrange term is found immediately from the computation
in the proof of Theorem 3.1. Further we have

hdiξΘλ = hd(Lξiωi + (f iσ(ξ
σ − yσk ξ

k) + f ijσ (ξσj − yσjkξ
k)) ∧ ωi

−(f iση
σ + f ijσ η

σ
j ) ∧ iξωi)

= di(Lξi + f iσ(ξ
σ − yσk ξ

k) + f ijσ (ξσj − yσjkξ
k))ω0.

Using Equations (3.7) finishes the proof.

♦

3.2 Gauge Natural Structures

Many physical theories can be described as a gauge natural field theory, i.e.
they have the following gauge natural structure. A gauge natural structure
is made of the following items:

1. a structure bundle P which is a principal bundle over an n-dimensional
manifold X with a Lie group G,
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2. a configuration bundle C which is a gauge natural bundle of order (s, r)
which is associated to W s,rP , 1

3. a Lagrangian λ of order r on C which is gauge natural, i.e. λ is a r-th
order gauge natural operator from C to ∧nT ∗B.

We show that condition 3 can be replaced by the equivalent one.

Theorem 3.3. A Lagrangian λ of order 2 on C is gauge natural iff Θλ is
Aut(P )-invariant, i.e. J3Cf∗Θλ = Θλ for all local automorphisms f ∈ Aut(P ).

Proof: First we prove that (JrCf)∗λ = λ holds iff ∧nT ∗Bf ◦ λ̃ = λ̃ ◦ JrCf ,
where we denote for the moment by λ the Lagrangian considered as a horizontal
form and by λ̃ the Lagrangian considered as morphism. We note that the func-
tors C and ∧nT ∗B are considered to be restricted to the subcategory of PBn(G)
with a fixed principal bundle P . Let u = Jrxγ ∈ JrC and ξ1, . . . , ξn ∈ TuJ

rC,
then λ̃ and λ are related by λ(u)(ξ1, . . . , ξn) = λ̃(u)(Tuπr(ξ1), . . . , Tuπr(ξn)).
Now the statement follows from the computation below (πr is a submersion)

(JrCf)∗λ(u)(ξ1, . . . , ξn) = λ(JrCf(u))(TuJrCf(ξ1), . . . , TuJrCf(ξn))

= λ̃ ◦ JrCf(u)(Tu(πr ◦ JrCf)(ξ1), . . . , Tu(πr ◦ JrCf)(ξn))

= λ̃ ◦ JrCf(u)(TxBf ◦ Tuπr(ξ1), . . . , TxBf ◦ Tuπr(ξn))
= ∧nT ∗Bf−1 ◦ λ̃ ◦ JrCf(u)(Tuπr(ξ1), . . . , Tuπr(ξn)).

Using Theorem 2.9 we have the following diagram:

JrCP

JrCf

��

λ̃ // ∧nT ∗BP
∧nT∗Bf

��
JrCP

λ̃ // ∧nT ∗BP

The condition ∧nT ∗Bf ◦ λ̃ = λ̃ ◦ JrCf for all automorphisms f ∈ Aut(P ) is
equivalent to a Lagrangian λ of order r on C being gauge natural. Thus we
obtain that a Lagrangian λ of order r on C is gauge natural iff (JrCf)∗λ = λ
holds for all automorphisms f ∈ Aut(P ).

Secondly we prove that J3g∗Θλ = ΘJ2g∗λ for all local automorphisms g ∈
Aut(C). Let (V, ψ), ψ = (xi, yσ) and (V̄ , ψ̄), ψ̄ = (x̄i, ȳσ) be two fibered
charts such that g(V ) ⊂ V̄ . We write x̄i ◦ g0 ◦ φ−1 = x̄i where φ = (xi) and
ȳσ◦g◦ψ−1 = ȳσ. Now we can use the transformation rules for the jet coordinates
and the contact forms from Theorem 3.1 and we obtain in the obvious shorthand

1In what follows we write C for the corresponding functor too.
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notation

ΘJ2g∗λ = L̄Jω0 +

(
∂L̄J
∂yσi

− dp
∂L̄J
∂yσpi

)
ησ ∧ ωi +

∂L̄J
∂yσji

ησj ∧ ωi

= L̄Jω0 +

(
∂L̄
∂yσi

J − dp
∂L̄J
∂yσpi

)
ησ ∧ ωi +

∂L̄
∂ȳρqm

∂ȳρ

∂yσ
∂xj

∂x̄q
∂xi

∂x̄m
Jησj ∧ ωi

J3g∗Θλ = J3g∗

(
L̄ω̄0 +

(
∂L̄
∂ȳσi

− d̄p
∂L̄
∂ȳσpi

)
η̄σ ∧ ω̄i +

∂L̄
∂ȳσji

η̄σj ∧ ω̄i

)

= L̄Jω0 +

(
∂L̄
∂ȳσi

− d̄p
∂L̄
∂ȳσpi

)
∂ȳσ

∂yν
ην ∧ ∂xj

∂x̄i
Jωj +

∂L̄
∂ȳσji

(
∂ȳσ

∂yρ
∂xl

∂x̄j
ηρl

+dl
∂ȳσ

∂yρ
∂xl

∂x̄j
ηρ

)
∧ ∂xk

∂x̄i
Jωk = L̄Jω0 +

(
∂L̄
∂ȳσi

− d̄p
∂L̄
∂ȳσpi

)
∂ȳσ

∂yν
∂xj

∂x̄i
Jην ∧ ωj

+
∂L̄
∂ȳσji

dl
∂ȳσ

∂yρ
∂xl

∂x̄j
∂xk

∂x̄i
Jηρ ∧ ωk +

∂L̄
∂ȳσji

∂ȳσ

∂yρ
∂xl

∂x̄j
∂xk

∂x̄i
Jηρl ∧ ωk.

So the first and the last terms in the expressions for ΘJ2g∗λ and J3g∗Θλ are
same. But the following computation shows that the remaining terms are same
too:

∂L̄
∂yσi

J − dp
∂L̄J
∂yσpi

=

(
∂L̄
∂ȳρj

∂ȳρ

∂yσ
∂xi

∂x̄j
+

∂L̄
∂ȳρjk

(
∂2ȳρ

∂yσ∂xl
∂xi

∂x̄j
∂xl

∂x̄k
+
∂ȳρ

∂yσ
∂2xi

∂x̄j∂x̄k

+
∂2ȳρ

∂xl∂yσ
∂xl

∂x̄j
∂xi

∂x̄k
+

∂2ȳρ

∂yσ∂yν
yνl

(
∂xi

∂x̄j
∂xl

∂x̄k
+
∂xl

∂x̄j
∂xi

∂x̄k

)))
J

−dp

(
∂L̄
∂ȳρjk

∂ȳρ

∂yσ
∂xp

∂x̄j
∂xi

∂x̄k

)
J − ∂L̄

∂yσpi
dpJ =

(
∂L̄
∂ȳρj

− d̄q
∂L̄
∂ȳρqj

)
∂ȳρ

∂yσ
∂xi

∂x̄j
J

+
∂L̄
∂ȳρjk

(
∂2ȳρ

∂yσ∂xl
∂xi

∂x̄j
∂xl

∂x̄k
+
∂ȳρ

∂yσ
∂2xi

∂x̄j∂x̄k
+

∂2ȳρ

∂xl∂yσ
∂xl

∂x̄j
∂xi

∂x̄k

+2
∂2ȳρ

∂yσ∂yν
yνl
∂xi

∂x̄j
∂xl

∂x̄k
− dp

∂ȳρ

∂yσ
∂xp

∂x̄j
∂xi

∂x̄k
− ∂ȳρ

∂yσ
dp
∂xp

∂x̄j
∂xi

∂x̄k

−∂ȳ
ρ

∂yσ
∂xp

∂x̄j
dp
∂xi

∂x̄k
− ∂ȳρ

∂yσ
∂xp

∂x̄j
∂xi

∂x̄k
∂xq

∂x̄l
∂2x̄l

∂xp∂xq

)
J

=

(
∂L̄
∂ȳρj

− d̄q
∂L̄
∂ȳρqj

)
∂ȳρ

∂yσ
∂xi

∂x̄j
J +

∂L̄
∂ȳρjk

dp
∂ȳρ

∂yσ
∂xp

∂x̄j
∂xi

∂x̄k
J

+
∂L̄
∂ȳρjk

∂ȳρ

∂yσ

(
∂2xi

∂x̄j∂x̄k
− dp

∂xp

∂x̄j
∂xi

∂x̄k
− ∂xp

∂x̄j
dp
∂xi

∂x̄k
− ∂xp

∂x̄j
∂xi

∂x̄k
∂xq

∂x̄l
∂2x̄l

∂xp∂xq

)
J,
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where the last term is zero because

∂2xi

∂x̄j∂x̄k
− dp

∂xp

∂x̄j
∂xi

∂x̄k
− ∂xp

∂x̄j
dp
∂xi

∂x̄k
− ∂xp

∂x̄j
∂xi

∂x̄k
∂xq

∂x̄l
∂2x̄l

∂xp∂xq

= − ∂x
i

∂x̄k

(
∂2x̄l

∂x̄q∂x̄j
∂x̄q

∂xl
+
∂xp

∂x̄j
∂xq

∂x̄l
∂2x̄l

∂xp∂xq

)
= − ∂x

i

∂x̄k
∂

∂x̄j

(
∂xl

∂x̄q
∂x̄q

∂xl

)
= 0.

Thus we really have J3g∗Θλ = ΘJ2g∗λ for all local automorphisms g ∈ Aut(C).
If a Lagrangian λ of order 2 on C is gauge natural, then combining both

statements together we get J3Cf∗Θλ = Θ(J2Cf)∗λ = Θλ for all local au-
tomorphisms f ∈ Aut(P ), i.e. λ is Aut(P )-invariant. Conversely, if λ is
Aut(P )-invariant, then we have Θ(J2Cf)∗λ = J3Cf∗Θλ = Θλ for all local au-
tomorphisms f ∈ Aut(P ). If we apply the horizontalization, then we see that
(J2Cf)∗λ = λ holds for all local automorphisms f ∈ Aut(P ). Therefore the
first statement implies that λ is gauge natural and it finishes the proof.

♦

The definition of the gauge natural structure given here differs from the
definition used in [16]. In [16], the authors assign to Lagrangian λ of order r a
form Θλ and define λ to be Aut(P )-covariant, if (Jr−1Cf)∗Θλ = Θλ for all
f ∈ Aut(P ); instead of condition 3 they apply the Aut(P )-covariance condition.
They also apply one more condition which we do not need here.

In [16] the authors introduce the Lepage form (3.5) and higher order Lepage
forms without knowledge of original sources [28, 29]. However the generalization
of Θλ as well as the covariance condition in higher order gauge natural field
theories (Lagrangian symmetries) are unclear.

3.3 Noether’s Theorem and Induced Variations

If we want to write Noether’s theorem, we have to introduce the notion of
an invariance transformation. If Y denotes a differentiable manifold and f a
local diffeomorphism of Y and f∗ρ = ρ holds for a differential form ρ on Y ,
then f is called an invariance transformation of the differential form ρ. In
the calculus of variations we deal with fibered manifolds and we use their local
automorphisms, which transform cross sections into cross sections. If Jrf∗ρ = ρ
holds for a (local) automorphism f ∈ Aut(Y ) of the fibered manifold Y and ρ ∈
ΩrpW , then we just say that f (instead of Jrf) is an invariance transformation
of ρ. Let ξ be a projectable vector field on Y . We say that ξ is the generator
of invariance transformations of ρ, if ∂Jrξρ = 0. This notion includes
the invariance of a Lagrangian or the Euler-Lagrange form Eλ given by
the relation Eλ = p1dΘλ for a Lepage equivalent of a Lagrangian λ. We say
that a section γ ∈ ΓΩ,W (Y ) is an extremal of the variational function λΩ

corresponding to a Lagrangian λ ∈ Ωrn,XW , if it is a stable point with respect
to all its variations induced by a vector field ξ with support contained in π−1(Ω).
A section γ is called simply an extremal, if it is an extremal for every variational
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function λΩ. It is a consequence of the integral first variation formula (see [30]
or Equation (3.13) below) that γ is an extremal of λΩ if and only if one of the
following conditions holds: 2

1. For every π-vertical vector field ξ satisfying the condition on ξ in the
definition of an extremal of λΩ we have Jr−1γ∗iJr−1ξdΘλ = 0.

2. For any fibered chart (V, ψ), ψ = (xi, yσ), γ satisfies the system of partial
differential equations

Eσ(L) ◦ Jrγ = 0, 1 ≤ σ ≤ m, (3.9)

where Eσ(L) are the so called Euler-Lagrange expressions, which ap-
pear in the relation (also proved in [30])

p1dΘλ = Eσ(L)ησ ∧ ω0. (3.10)

For the principal Lepage equivalent from Theorem 3.1 we have Eσ(L) =(
∂L
∂yσ − di

(
∂L
∂yσi

− dp
∂L
∂yσpi

))
(compare with Theorem 3.2).

3. The Euler-Lagrange form associated with λ vanishes along Jrγ, i.e.

Eλ ◦ Jrγ = 0. (3.11)

It can be proved (see [28]) that if g is an invariance transformation of a La-
grangian λ, then it is an invariance transformation of its Euler-Lagrange form Eλ.
Moreover, if g is an invariance transformation of the Euler-Lagrange form Eλ,
then it brings an extremal γ into an extremal, i.e. g ◦γ ◦g−1

0 is an extremal too.

Theorem 3.4. (Noether’s theorem) Let Θλ ∈ Ωr−1
n W be a Lepage equivalent

of a Lagrangian λ ∈ Ωrn,XW and let γ be an extremal. For any generator ξ of
invariance transformations of λ

dJr−1γ∗iJr−1ξΘλ = 0 (3.12)

holds.

Proof: It is a consequence of the integral first variation formula

(∂Jrξλ)Ω(γ) =
∫

Ω

Jr−1γ∗iJr−1ξdΘλ +
∫

Ω

Jr−1γ∗diJr−1ξΘλ.

The left hand side vanishes because ξ is a generator of invariance transformations
of λ, i.e. ∂Jrξλ = 0. The first term on the right hand side vanishes because γ is

2We suppose that the order of the Lepage equivalent is r−1 as before in the first variation
formula (3.8). But generally, if the Lagrangian is of order r, then the Euler-Lagrange equations
are of order less or equal to 2r. So in Equations (3.9) and (3.11) we should write J2rγ instead
of Jrγ.
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an extremal. In fact, we have∫
Ω

Jr−1γ∗iJr−1ξdΘλ =
∫

Ω

Jrγ∗πr,r−1∗iJr−1ξdΘλ =
∫

Ω

Jrγ∗iJrξπ
r,r−1∗dΘλ

=
∫

Ω

Jrγ∗iJrξp1dΘλ =
∫

Ω

Jrγ∗iJrξ(Eσ(L)ησ ∧ ω0)

=
∫

Ω

Eσ(L) ◦ Jrγ ·
(
ξσ ◦ γ − ∂(yσ ◦ γ)

∂xj
ξj
)
ω0 = 0, (3.13)

where we have used the canonical decomposition of πr,r−1∗dΘλ into the hor-
izontal and contact component. The horizontal part is zero, since it is the
horizontalization of an n + 1 form and from the contact component only the
1-contact part survives the pullback by Jrγ. We have also made use of Equa-
tion (3.10) and (3.9). Thus the second term on the right hand side of the integral
first variation formula must be zero. Therefore we see that Jr−1γ∗diJr−1ξΘλ =
dJr−1γ∗iJr−1ξΘλ = 0 holds for any generator ξ of invariance transformations
of L.

♦

Equation (3.12) from Noether’s theorem is called (differential) conservation
law. The term iJr−1ξΘλ in the conservation law is called the current. The
case when the assumptions are relaxed to only ξ being a generator of invari-
ance transformations of Eλ in Theorem 3.4 (Noether-Bessel-Hagen theorem) is
treated in [28], [8] or [25].

Now we will discuss the first variation formula for the so called induced
variations for a gauge natural Lagrangian λ. By the induced variation we
mean the variation induced by the lifted 3 vector field Cξ on the configuration
bundle C determined by an (infinitesimal) generator of automorphisms ξ
on a principal bundle P which is a vector field such that Flξt ∈ Aut(P ). We
have seen in the first part of the proof of Theorem 3.3 that a Lagrangian λ of
order r on C is gauge natural iff (JrCf)∗λ = λ holds for all local automorphisms
f ∈ Aut(P ), so Cf is an invariance transformation of the Lagrangian λ. If ξ is a
generator of automorphisms on P , then we have (FlJ

rCξ
t )∗λ = (JrCFlξt )∗λ = λ,

so differentiating at t = 0 we obtain

∂JrCξλ = 0, (3.14)

thus Cξ is the generator of invariance transformations of λ and Equation (3.14)
is called the covariance identity.

Now we will find for the next computations a local expression of the generator
of automorphisms ξ on a principal bundle P . First we show that locally we can
write

φα ◦ Flξt ◦ φ−1
α (x, a) = ((Flξt )0(x), (Flξt )1(x)a) (3.15)

3Here lifting means acting by the flow operator corresponding to a configuration bundle C.
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for all (x, a) ∈ Uα × G, where φα : π−1(Uα)→Uα × G is a local trivialization
of P . Certainly there exists a map (Flξt )′1 : Uα ×G→G such that

φα ◦ Flξt ◦ φ−1
α (x, a) = ((Flξt )0(x), a(Flξt )

′
1(x, a)) (3.16)

for all (x, a) ∈ Uα ×G. The computation (· is the principal right action on P )

((Flξt )0(x), ab(Flξt )
′
1(x, ab)) = φα ◦ Flξt ◦ φ−1

α (x, ab) = φα ◦ Flξt (φ
−1
α (x, a) · b)

= φα(Flξt (φ
−1
α (x, a)) · b) = φα(φ−1

α ((Flξt )0(x), a(Flξt )
′
1(x, a)) · b)

= ((Flξt )0(x), a(Flξt )
′
1(x, a)b)

shows that (Flξt )′1(x, ab) = b−1(Flξt )′1(x, a)b for all x ∈ Uα, a, b ∈ G. This could
be seen at once from the properties of τ : (Uα × G) ×Uα (Uα × G)→G from
page 11, if we realize that (Flξt )′1(x, a) = τ(((Flξt )0(x), a), φα ◦Flξt ◦φ−1

α (x, a)). If
we set (Flξt )1(x) = (Flξt )′1(x, e), then we have (Flξt )′1(x, a) = a−1(Flξt )1(x)a and
so we obtain from relation (3.16) Equation (3.15). Now we write

ξ0(x) =
(
d

dt
(Flξt )0(x)

)
0

= ξi(x)
∂

∂xi
, (3.17)

ξ1(x) =
(
d

dt
(Flξt )1(x)

)
0

= ξP (x)eP , (3.18)

where eP , 1 ≤ P ≤ dimG is a basis of g. Furthermore, ρ is the right transla-
tion, RP (a) = ReP (a) = Teρa(eP ) denotes the right invariant vector field on G
corresponding to eP . So we get, differentiating Equation (3.15) at t = 0, the
local expression of the generator of automorphisms ξ

ξ(x, a) = ξ0(x) + Teρa(ξ1(x)) = ξi(x)
∂

∂xi
+ ξP (x)Teρa(eP )

= ξi(x)
∂

∂xi
+ ξP (x)RP (a). (3.19)



Chapter 4

The Hilbert-Yang-Mills
Functional

We analyze the gauge natural structure of the Einstein-Yang-Mills
theory, which describes the interaction of gravity with the Yang-
Mills field. We introduce the Hilbert-Yang-Mills functional, whose
Lagrangian λ is given by the sum of the Hilbert Lagrangian and
the Yang-Mills Lagrangian. We derive the principal Lepage equiva-
lent of the Hilbert-Yang-Mills Lagrangian and the corresponding first
variation formula. We study the invariance of λ with respect to au-
tomorphisms of a structure bundle and we discuss the first variation
formula for induced variations. We show that the currents in the
Einstein-Yang-Mills theory split into three summands, one of which
is the exterior derivative of the Komar-Yang-Mills superpotential.

4.1 The Gauge Natural Structure of Einstein-
Yang-Mills Theory

First we describe the gauge natural structure of Einstein-Yang-Mills theory.
Let (P, p,X,G) be a structure bundle, where the n-dimensional manifold X is
interpreted as spacetime. We shall consider Yang-Mills theories with a general
Lie group G. The configuration bundle for the Yang-Mills part is Ce = QP ,
where QP is the bundle of principal connections. The configuration bundle
for the gravitational part is Cg = F 1X ×l1 LMet Rn, where LMet Rn is the
set of bilinear, symmetric, non-degenerate forms with the Lorentzian signature

36
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(1, n − 1) and l1 : L1
n × LMet Rn→LMet Rn, l1(a, g) = g ◦ (a−1 × a−1) is a

left action (L1
n
∼= GL(Rn)). We shall take C = Cg ×X Ce as the configuration

bundle for gravitation and Yang-Mills theory, which we call Einstein-Yang-
Mills theory. With respect to Theorem 2.8 and Theorem 2.7 we see that C is
the gauge natural bundle of order 1 and C ∼= W 1P ×l (LMet Rn × S).

We wish to discuss the condition 3 in the definition of the gauge natural
structure in more detail. By describing all possible gauge natural Lagrangians
we will immediately see that the Hilbert-Yang-Mills Lagrangian has the required
form. We assume that the interaction Lagrangian for the Einstein-Yang-Mills
theory is of first order and we look for all first order gauge natural operators
C → ∧nT ∗B from the configuration bundle C of the Einstein-Yang-Mills theory.
In what follows we prove the Utiyama-like theorem. Utiyama’s theorem [57] was
reproved and generalized by many authors. Our proof is based on the Utiyama-
like theorem in [25] for the bundle of principal connections implemented with
the gravitational part. For a higher order version of the Utiyama-like theorem
see [24]. Our assertion agrees with the result given in [16] where the authors
used a different method.

We will apply the orbit reduction , i.e. the following theorem [25, 34]. Let
G, G̃ be Lie groups and let p : G→ G̃ be a surjective Lie group homomorphism
with kernel K. Let M be a left G-manifold and Q, M̃ left G̃-manifolds. Then
we can define a left action of the group G on the manifold M̃ by g · y = p(g) · y
for g ∈ G, y ∈ M̃ . Thus, M̃ becomes a left G-manifold. Let π : M→Q be
a p-equivariant surjective submersion, i.e. π(g · x) = p(g) · π(x) for all g ∈ G,
x ∈M .

Theorem 4.1. (orbit reduction) If for every point q ∈ Q the set π−1(q) is a
K-orbit in M , then there exists a bijection between smooth G-equivariant maps
f : M→ M̃ and smooth G̃-equivariant maps f ′ : Q→ M̃ given by f = f ′ ◦ π,
i.e. we have the commutative factorization diagram

M
f //

π

��

M̃

Q

f ′

>>~~~~~~~~

Proof: For every smooth G̃-equivariant map f ′ : Q→ M̃ we have f ′◦π(g ·x) =
f ′(p(g) · π(x)) = p(g) · (f ′ ◦ π(x)), so f ′ ◦ π is a smooth G-equivariant map.
Conversely, for every G-equivariant map f : M→ M̃ we can define f ′ : Q→ M̃
by f ′(π(x)) = f(x). Such an f ′ is well defined, in fact, for another representative
π(x̃) = π(x), i.e. x̃, x ∈ π−1(q) = orbK(x) we have x̃ = kx with k ∈ K, thus we
get f ′(π(x̃)) = f ′(π(k · x)) = f(k · x) = p(k) · f(x) = e · f(x) = f(x). Since π is
a surjective submersion and f = f ′ ◦ π is smooth, f ′ is smooth by the universal
property of surjective submersion. Since p and π are surjective, there exists for
all g̃ ∈ G̃ and q ∈ Q some g ∈ G and x ∈ M such that p(g) = g̃ and π(x) = q,
hence we have f ′(g̃ · q) = f ′(p(g) · π(x)) = f ′(π(g · x)) = f(g · x) = p(g) · f(x) =



Chapter 4. The Hilbert-Yang-Mills Functional 38

g̃ · f ′(q), thus f ′ is G̃-equivariant. The uniqueness of the f ′ follows from the
surjectivity of π, therefore we have proved that f 7→ f ′ is a bijection.

♦

From Theorem 2.9 and Theorem 2.11 we see that first order gauge natural
operators C→∧nT ∗B are in canonical bijection with W 2

nG-equivariant maps
J1

0C→∧nT ∗B0 between the standard fibers J1
0C = J1

0C(Rn × G), ∧nT ∗B0 =
∧nT ∗B0(Rn × G). Using Theorem 2.4 we get the left W 2

nG-manifold J1
0C

∼=
T 1
n(LMetRn×S) with the left action l1 given by Equation (2.6), further we have

the left L1
n-manifold ∧nT ∗B0

∼= R with the action given by

t̄ = |det a|−1t (4.1)

where t, t̄ ∈ R and a ∈ L1
n.

Now we are going to describe the action l2 from Theorem 2.7 in more detail.
For the fiber we get S ∼= J1

0 (Rn, G)e ∼= L(T0Rn, TeG) ∼= L(Rn, g) ∼= g ⊗ Rn∗
and for the group W 1

nG
∼= L1

n o T 1
nG

∼= (L1
n × G) o (g ⊗ Rn∗), where in

the last identification we use the isomorphism T rnG→G o Jr0 (Rn, G)e given
by Jr0 s 7→ (s(0), Jr0 (s(0)−1 · s)). We want to express the action l2((A, a, Z), Y )
with (A, a, Z) ∼= J1

(0,e)φ ∈ W 1
nG, A = J1

0φ0, a = pr2 ◦φ(0, e), Z = T0(a−1φ1)
and Y = T0s̄ ∈ S, where s̄ = pr2 ◦s for s : Rn→Rn × G such that s(0) =
(0, e). By definition Qφ(J1

0 s) = [J1
0 (ρa−1 ◦ φ ◦ s ◦ φ−1

0 )], where ρ denotes
the principal right action of G. Then we evaluate pr2 ◦ρa−1 ◦ φ ◦ s(x) =
pr2 ◦ρa−1 ◦ φ ◦ ρs̄(x)(x, e) = pr2 ◦ρa−1 ◦ ρs̄(x)(φ0(x), φ1(x)) = φ1(x)s̄(x)a−1 =
conja ◦µ ◦ (a−1φ1, s̄)(x), with µ denoting the multiplication in the group G and
conja is the conjugation (the inner automorphism) associated with a ∈ G
defined by conja : G→G; conja(x) = axa−1. By applying the tangent functor
we find that

l2((A, a, Z), Y ) = T0(pr2 ◦ρa−1 ◦ φ ◦ s ◦ φ−1
0 ) = T0(conja ◦ µ ◦ (a−1φ1, s̄) ◦ φ−1

0 )

= Teconja ◦ T(e,e)µ(T0(a · φ1), T0s̄) ◦ T0φ
−1
0 ) = Ad(a)(Y + Z) ◦A−1,

where Ad : G→GL(g); Ad(a) = Teconja is the adjoint representation of G
and in the last equality we use the relation T(a,b)µ(Xa, Yb) = Ta(ρb)Xa +
Tb(λaYb), here λa : G→G, λa(x) = ax denotes left translation and ρa :
G→G, ρa(x) = xa right translation.

Denote by ei the canonical basis of Rn and ei the dual basis of Rn and eP
the basis of g. Each element g ∈ LMetRn is then uniquely written in the form
g = gij(g)ei � ej and each element Γ ∈ L(Rn, g) is uniquely written in the form
Γ(ei) = ΓPi (Γ)eP , where 1 ≤ i ≤ j ≤ n and 1 ≤ P ≤ m = dimG. The system of
functions (gij ,ΓPi ) defines a global chart on LMetRn×L(Rn, g). So there exists
a canonical global chart

gij(J1
0 s) = gij(s(0)), gij,k(J1

0 s) = Dk(gijs)(0),

ΓPi (J1
0 s) = ΓPi (s(0)), ΓPij(J

1
0 s) = Dj(ΓPi s)(0)
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on T 1
n(LMetRn × L(Rn, g)). The coordinate functions on W 2

nG are defined by

aij(J
2
(0,e)φ) = Djφ

i
0(0), aPi (J2

(0,e)φ) = Di(a−1φ1)P (0),

aijk(J
2
(0,e)φ) = DjDkφ

i
0(0), aPij(J

2
(0,e)φ) = DiDj(a−1φ1)P (0),

where a = pr2 ◦φ(0, e). The action of W 2
nG on T 1

n(LMetRn × L(Rn, g)) is given
by Equation (2.6), i.e.

l1(J2
(0,e)φ, J

1
0 s) = J1

0 (l ◦ ((b−1 ◦W 1φ ◦ b)1 ◦ φ−1
0 , s ◦ φ−1

0 )), (4.2)

where b denotes the identification b : Rn×W r
nG 3 (x, Jr(0,e)φ) 7→ Jr(0,e)(τx ◦φ) ∈

W r(Rn×G) for r = 1, τx = tx×idG and tx is the translation Rn→Rn, y 7→ y+x,
so we use the inclusion W 2

nG ↪→W 1
nW

1
nG, J

2
(0,e)φ 7→ J1

(0,e)(b
−1 ◦W 1φ ◦ b), and

l is induced by l1 and l2 (see the proof of Theorem 2.8). Now we want to
express Equation (4.2) in coordinates. For some J1

(0,e)φ ∈ W 1
nG and (g,Γ) ∈

LMetRn × L(Rn, g) our l1 and l2 have in coordinates the form

gij(J1
(0,e)φ · g) = ãki (J

1
(0,e)φ)ãlj(J

1
(0,e)φ)gkl(g), (4.3)

ΓPi (J1
(0,e)φ · Γ) = AP

Q(pr2 ◦β(J1
(0,e)φ))(ΓQj (Γ) + aQj (J1

(0,e)φ))ãji (J
1
(0,e)φ), (4.4)

where ãji (J
1
(0,e)φ) = Diφ

−1j
0 (0) and AP

Q is the coordinate expression of the
adjoint representation of G. Using the identity (b−1 ◦ W 1φ ◦ b)1 ◦ φ−1

0 (x) =
J1

(0,e)(τ
−1
x ◦ φ ◦ τφ0(x)) we deduce that the action of W 2

nG on T 1
n(LMetRn ×

L(Rn, g)) has the form

ḡij = ãki ã
l
jgkl,

ḡij,k = ãliã
m
j ã

n
kglm,n + (ãlkiã

m
j + ãliã

m
kj)glm,

Γ̄Pi = AP
Q(a)(ΓQj + aQj )ãji ,

Γ̄Pij = AP
Q(a)ΓQklã

k
i ã
l
j + AP

Q(a)aQklã
k
i ã
l
j +DP

QR(a)ΓQk a
R
l ã

k
i ã
l
j

+EPQR(a)aQk a
R
l ã

k
i ã
l
j + AP

Q(a)(ΓQk + aQk )ãkij ,

where we introduced shorthand notation, e.g. gij = gij(J1
0 s), ḡij = gij(J2

(0,e)φ ·
J1

0 s), a
i
j = aij(J

2
(0,e)φ), ΓPi = ΓPi (J1

0 s) etc., DP
QR(a) = DRAP

Q(a), EPQR(a) =
DRAP

Q(a)+AP
S (a)DR(DQ((a · (.))−1 ·a · (.))S(e))(e), the first input corresponds

to DR and the second input corresponds to DQ.
Before we apply orbit reduction we replace the coordinates (gij , gij,k,ΓPi ,Γ

P
ij)

on T 1
n(LMetRn×L(Rn, g)) by (gij ,Γi,jk = 1

2 (gij,k+gik,j−gjk,i),ΓPi , RPij = ΓP[ij]+

cPQRΓQi ΓRj , S
P
ij = ΓP(ij)), where [ ] denotes antisymetrisation, ( ) symetrisation

(both without a factor 1/2) and cPQR the structure constants of G. Then the
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action of W 2
nG on T 1

n(LMetRn × L(Rn, g)) has the form

ḡij = ãki ã
l
jgkl,

Γ̄i,jk = ãliã
m
j ã

n
kΓl,mn + ãliã

m
kjglm,

Γ̄Pi = AP
Q(a)(ΓQj + aQj )ãji ,

R̄Pij = AP
Q(a)RQklã

k
i ã
l
j ,

S̄Pij = AP
Q(a)SQklã

k
i ã
l
j + AP

Q(a)aQklã
k
(iã

l
j) +DP

QR(a)ΓQk a
R
l ã

k
(iã

l
j)

+EPQR(a)aQk a
R
l ã

k
(iã

l
j) + AP

Q(a)(ΓQk + aQk )ãkij .

We define π : T 1
n(LMetRn × L(Rn, g))→LMetRn × (g⊗ ∧2Rn∗),

(gij ,Γi,jk,ΓPi , R
P
ij , S

P
ij) 7→ (gij , RPij), so it is a surjective submersion and p :

W 2
nG

∼= L2
n o T 2

nG→L1
n × G, p = π2,1 × β. In the following theorem R is

considered as the left L1
n × G-manifold with the action given by (4.1) (G is

acting trivially) and LMetRn× (g⊗∧2Rn∗) is a L1
n×G-manifold too (with the

action given in the coordinates by ḡij = ãki ã
l
jgkl and R̄Pij = AP

Q(a)RQklã
k
i ã
l
j).

Theorem 4.2. For every W 2
nG-equivariant map f : T 1

n(LMetRn×L(Rn, g))→R
there exists a unique L1

n × G-equivariant map f ′ : LMetRn × (g ⊗ ∧2Rn∗)→R
satisfying f = f ′ ◦ π.

Proof: We apply Theorem 4.1. We see that π is a p-equivariant surjective
submersion. Thus we only have to prove that each fiber of π is a K-orbit. The
action of K on T 1

n(LMetRn × L(Rn, g)) has the form

ḡij = gij ,

Γ̄i,jk = Γi,jk + ãlkjgil,

Γ̄Pi = ΓPi + aPi ,

R̄Pij = RPij ,

S̄Pij = SPij + aPij +DP
QR(e)ΓQ(ia

R
j) + EPQR(e)aQ(ia

R
j) + (ΓPk + aPk )ãkij .

From this we get π−1(gij , RPij) = orbK(gij , 0, 0, RPij , 0).

♦

Theorem 4.2 is equivalent to the following modification of Utiyama’s assertion.

Theorem 4.3. For every first order gauge natural Lagrangian of the Einstein-
Yang-Mills theory λ : C→∧nT ∗B there exists a unique natural transformation
λ̄ : Cg ×B ((.)×Ad g⊗∧2T ∗B)→∧nT ∗B satisfying λ = λ̄ ◦ (idCg ×B R), where
R : Ce = Q→(.)×Ad g⊗ ∧2T ∗B is the curvature operator.

Proof: We apply Theorem 2.9 and Theorem 2.11.

♦
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In other words, our interaction gauge natural Lagrangian depends on its
variables only through the metric and the curvature of the principal connec-
tion. We can take as the interaction Lagrangian the Yang-Mills Lagrangian
i.e. corresponding to the L1

n × G-equivariant mapping f ′ : LMet Rn × (g ⊗
∧2Rn∗)→R, (gij , RPij) 7→ −(1/4)RPijg

ikgjlRQklhPQ
√
g, where g = |det gij | and

h denotes an Ad-invariant form on the Lie algebra g, i.e. invariant with respect
to the adjoint representation Ad of G in the sense that for all g ∈ G, X, Y ∈ g
the relation h(Adg(X),Adg(Y )) = h(X,Y ) holds, and so f ′ is indeed L1

n × G-
equivariant.

Analogously it can be shown [54] that every L3
n-equivariant mapping from

the left L3
n-manifold T 2

nLMet Rn to the left L1
n-manifold R depends only on gij

and the curvature Rijkl. We can take as the free Lagrangian the Hilbert La-
grangian corresponding to the L1

n-equivariant mapping which sends (gij , Rijkl)
to gijgklRlikj

√
g. Because every gauge natural operator of some order can be

considered as an operator of higher order, we can think of the first order inter-
action Lagrangian as being of second order and we simply add the interaction
and free Lagrangian to get the total second order gauge natural Lagrangian.

We now introduce a global variational principle for the Einstein-Yang-Mills
equations. Let X be a n-dimensional manifold and let (P, p,X,G) be a struc-
ture bundle over X. By the Hilbert-Yang-Mills Lagrangian for P we mean
the Lagrangian λ = λH + λYM on J2C, where in any fibered chart (cf. Equa-
tion (4.9)) we have

λH = LHω0 = R
√
gω0, λYM = LYMω0 = −1

4
RPijg

ikgjlRQklhPQ
√
gω0. (4.5)

In these equations R is the scalar curvature, RPij = ΓPj,i − ΓPi,j + cPQRΓQi ΓRj is
the curvature (field strength) of the principal connection (Yang-Mills field) ΓPi ,
hPQ are the components of an Ad-invariant form on the Lie algebra g. We
define the Christoffel symbols by Γijk = (1/2)gis(gsj,k+gsk,j−gjk,s). The chart
expressions of the curvature tensor, the Ricci tensor and the scalar curvature
are given by Rijkl = dkΓijl − dlΓijk + ΓiskΓ

s
jl − ΓislΓ

s
jk, Rjl = Rmjml, R = gjlRjl.

We summarize that the gauge natural structure of the Einstein-Yang-Mills
theory is made of the following items:

1. a structure bundle (P, p,X,G), where the n-dimensional manifold X is
interpreted as spacetime,

2. the configuration bundle C = Cg ×X Ce ∼= W 1P ×l (LMet Rn × S) which
is a gauge natural bundle of order 1,

3. the Hilbert-Yang-Mills Lagrangian λ on J2C.
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4.2 The Hilbert-Yang-Mills Lagrangian and In-
duced Variations

We denote the contact forms for the gravitational part by ηij = dgij − gij,ldx
l,

ηij,k = dgij,k−gij,kldxl and for the Yang-Mills part by ηPi = dΓPi −ΓPi,jdx
j (simi-

larly for the vector field ξ). Furthermore, we denote byGst = Rst−(1/2)gstR the
components of the Einstein tensor, by T ab = (1/2)(RPalR b

P l− (1/4)RPijR
ij
P g

ab)
the components corresponding to the stress-energy tensor and by ∇jRjiP =
djR

ji
P + RjiRc

R
PSΓSj − RijP Γkkj the components of the covariant derivative with

respect to the C-prolongation of the principal connection with respect to the
Levi-Civita connection (see [25]).

Theorem 4.4. The principal Lepage equivalent Θλ of the Hilbert-Yang-Mills
Lagrangian has a chart expression

Θλ =
√
g(R− 1

4
RPijR

ij
P )ω0 +

√
gRijP η

P
i ∧ ωj

+
1
2
√
g(glmgiagbj − 2gilgmagbj + gmaglbgij)gml,iηab ∧ ωj

+
√
g(gadgjb − gjdgab)ηab,d ∧ ωj .

The Euler-Lagrange term hiξdΘλ has a chart expression

hiξdΘλ =
√
g(−Gab + T ab)(ξab − gab,mξ

m)ω0 +
√
g∇jRjiP (ξPi − ΓPi,mξ

m)ω0.

The boundary term hdiξΘλ has a chart expression

hdiξΘλ = dj

(
√
g

(
R− 1

4
RPkiR

ki
P

)
ξj +

√
g(glbgij − gilgbj)Γali(ξab − gab,mξ

m)

+
√
gRijP (ξPi − ΓPi,mξ

m) +
√
g(gadgjb − gjdgba)(ξab,d − gab,dmξ

m)

)
ω0.

Proof: We use Equation (3.5) to compute only the Yang-Mills part, because
the gravitational part is standard (cf. [35]). We have

∂LYM
∂ΓPi

= cRPSΓSmg
ilgmkRQklhRQ

√
g = cRPSΓSmR

mi
R

√
g

∂LYM
∂ΓPi,j

= gikgjlRQklhPQ
√
g = RijP

√
g,

thus we get the principal Lepage equivalent corresponding to the Yang-Mills
Lagrangian

ΘλYM = −√g 1
4
RPijR

ij
P ω0 +

√
gRijP η

P
i ∧ ωj .
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Now we want to use Theorem 3.2 to compute the Euler-Lagrange term and
the boundary term. Using the identities ∂gik/∂gab = −(1/2)(giagkb + gibgka)
and ∂

√
g/∂gab = (1/2)

√
ggab we get

∂LYM
∂gab

= −1
8
(−2(RPalR b

P l +RPblR a
P l) +RPijR

ij
P g

ab)
√
g.

Using the identities dj
√
g = (1/2)

√
ggklgkl,j and gkl,j = gkrΓrlj + glrΓrkj we

obtain

hiξdΘλYM =
√
g(T ab(ξab − gab,mξ

m) +∇jRjiP (ξPi − ΓPi,mξ
m))ω0

hdiξΘλYM = dj

(
−√g 1

4
RPkiR

ki
P ξ

j +
√
gRijP (ξPi − ΓPi,mξ

m)
)
ω0.

♦

Therefore we get from Theorem 4.4 the Einstein-Yang-Mills equations

Gab = T ab, ∇jRjiP = 0 (4.6)

(see e.g. [3, 4, 27, 58]).
Now we will analyze those properties of the action function associated with

the Einstein-Yang-Mills Lagrangian λ, which follow from the covariance identity.
First we find the chart expression of Cξ.

Lemma 4.5. If a generator of automorphisms ξ on P is locally given by Equa-
tion (3.19), then its lift Cξ on the configuration bundle C for the Einstein-Yang-
Mills theory is expressed by

Cξ = ξi
∂

∂xi
−
(
∂ξl

∂xi
glj +

∂ξl

∂xj
gil

)
∂

∂gij

+
(
cPRQξ

RΓQi +
∂ξP

∂xi
− ΓPj

∂ξj

∂xi

)
∂

∂ΓPi
. (4.7)

Proof: The lift Cξ is given by Cξ =
(
d
dtCFlξt

)
0

=
(
d
dt ×l Z ◦W

1Flξt
)

0
, where

×lZ is defined before Theorem 2.4 and we denote by Z = LMetRn × L(Rn, g)
the fiber of the configuration bundle C for the Einstein-Yang-Mills theory. Let
(Uα, ϕα) be a chart on X at x = ψ0(0), φα : p−1(Uα)→Uα ×G a trivialization
of P ,

Φα : p̃−1(Uα)→Uα ×W 1
nG

∼= Uα × (L1
n o T 1

nG);

J1
(0,e)ψ 7→ (x, (J1

0 (t−ϕα(x) ◦ ϕα ◦ ψ0), J1
0 (pr2 ◦φα ◦ ψ1 ◦ ϕ−1

α ◦ tϕα(x))))

a local trivialization of W 1P with the inverse

(x, (J1
0α, J

1
0a)) 7→ J1

(0,e)(φ̂
−1
α ◦ τ̃(φ̂α)0(x)

◦ (α ◦ pr1, µ ◦ (a ◦ α−1 ◦ pr1,pr2))),

φ̂α : p−1(Uα)→Rn ×G; φ̂α = (ϕα × idG) ◦ φα,
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µ is the multiplication in G. We denote by τ̃ the τ defined on page 13 to
distinguish it from the τ defined on page 11 and used below, i.e. τ̃y = ty × idG,
e is the unit in G, ẽ is the unit in W 1

nG and let Ψα : π−1(Uα)→Uα×Z be a local
trivialization of the configuration bundle C. If we write ê : Rn→G; ê(y) = e
then we get

Φ−1
α (x, ẽ) = Φ−1

α (x, (J1
0 idRn , J

1
0 ê)) = J1

(0,e)(φ̂
−1
α ◦ τ̃(φ̂α)0(x)

).

So we have

Ψα ◦ [W 1Flξt , idZ ] ◦Ψ−1
α (x, f) = (π,pr2 ◦Ψα) ◦ [W 1Flξt , idZ ] ◦ [Φ−1

α (x, ẽ), f ]

= (π,pr2 ◦Ψα) ◦ [W 1Flξt ◦ Φ−1
α (x, ẽ), f ]

= (p̃ ◦W 1Flξt ◦ Φ−1
α (x, ẽ),pr2 ◦Ψα[W 1Flξt ◦ Φ−1

α (x, ẽ), f ])

= ((W 1Flξt )0 ◦ p̃ ◦ Φ−1
α (x, ẽ), τ(W 1Flξt ◦ Φ−1

α (x, ẽ),

Φ−1
α ((W 1Flξt )0 ◦ p̃ ◦ Φ−1

α (x, ẽ))−1 · f)

= (Flξ0t (x), τ(Φ−1
α (Flξ0t (x), ẽ),W 1Flξt ◦ Φ−1

α (x, ẽ)) · f)

= (Flξ0t (x), τ(J1
(0,e)(φ̂

−1
α ◦ τ̃

(φ̂α)0(Fl
ξ0
t (x))

),W 1Flξt ◦ J1
(0,e)(φ̂

−1
α ◦ τ̃(φ̂α)0(x)

)) · f)

= (Flξ0t (x), τ(J1
(0,e)(φ̂

−1
α ◦ τ̃

(φ̂α)0(Fl
ξ0
t (x))

), J1
(0,e)(Flξt ◦ φ̂−1

α ◦ τ̃(φ̂α)0(x)
)) · f)

= (Flξ0t (x), J1
(0,e)(τ̃−(φ̂α)0(Fl

ξ0
t (x))

◦ φ̂α ◦ Flξt ◦ φ̂−1
α ◦ τ̃(φ̂α)0(x)

) · f). (4.8)

Now we can use the fibered coordinates xi, gij , ΓPi on C induced by the global
chart on Z from page 38 and the local trivialization Ψα, i.e. the coordinates
given by

xi = xi ◦ pr1 ◦Ψα = pri ◦ϕα ◦ pr1 ◦Ψα,

gij = gij ◦ pr2 ◦Ψα, ΓPi = ΓPi ◦ pr2 ◦Ψα, (4.9)

to compute the components of the lift Cξ. From Equations (4.3), (4.4) and (4.8)
we get

x̄i = xi([W 1Flξt , idZ ](Ψ−1
α (x, g,Γ))) = xi(Flξ0t (x)),

gij(J1
(0,e)φ · g) = ãki (J

1
(0,e)φ)ãlj(J

1
(0,e)φ)gkl(g),

ΓPi (J1
(0,e)φ · Γ) = AP

Q(pr2 ◦β(J1
(0,e)φ))(ΓQj (Γ) + aQj (J1

(0,e)φ))ãji (J
1
(0,e)φ),

φ = τ̃−(φ̂α)0(Flξt (x))
◦ φ̂α ◦ Flξt ◦ φ̂−1

α ◦ τ̃(φ̂α)0(x)
.

Now we have to differentiate this at t = 0. We get(
d

dt
x̄i
)

0

= ξi. (4.10)
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Since we have

ãki (J
1
(0,e)(τ̃−(φ̂α)0(Fl

ξ0
t (x))

◦ φ̂α ◦ Flξt ◦ φ̂−1
α ◦ τ̃(φ̂α)0(x)

))

= Di((t−ϕα(Fl
ξ0
t (x))

◦ ϕα ◦ Flξ0t ◦ ϕ−1
α ◦ tϕα(x))−1)k(0)

= Di(xk ◦ Flξ0t ◦ ϕ−1
α )(ϕα(Flξ0t (x))),

where in the last equality we used an identity for the flow of a vector field
(see [36] page 78), we get(

d

dt
ãki (J

1
(0,e)(τ̃−(φ̂α)0(Fl

ξ0
t (x))

◦ φ̂α ◦ Flξt ◦ φ̂−1
α ◦ τ̃(φ̂α)0(x)

))
)

0

=
(
d

dt
Di(xk ◦ Flξ0t ◦ ϕ−1

α )(ϕα(Flξ0t (x)))
)

0

= −Diξ
k(ϕα(x)) = −∂ξ

k

∂xi

and so we obtain(
d

dt
ḡij

)
0

= −
(
∂ξk

∂xi
δlj + δki

∂ξl

∂xj

)
gkl = −

(
∂ξk

∂xi
gkj +

∂ξl

∂xj
gil

)
, (4.11)

where we denote for simplicity gkl = gkl(g). We write

a(t) = pr2 ◦β(J1
(0,e)(τ̃−(φ̂α)0(Fl

ξ0
t (x))

◦ φ̂α ◦ Flξt ◦ φ̂−1
α ◦ τ̃(φ̂α)0(x)

))

= pr2 ◦τ̃−(φ̂α)0(Fl
ξ0
t (x))

◦ φ̂α ◦ Flξt ◦ φ̂−1
α ◦ τ̃(φ̂α)0(x)

(0, e) = pr2 ◦φα ◦ Flξt ◦ φ−1
α (x, e).

Then the computation(
d

dt
APQ(a(t))eP

)
0

=
(
d

dt
Ad(a(t))eQ

)
0

= TeAd
(
d

dt
a(t)

)
0

eQ

= ad
(
d

dt
a(t)

)
0

eQ = ad(ξR(x)eR)eQ = [ξR(x)eR, eQ]

= ξR(x)[eR, eQ] = ξR(x)cPRQeP ,

where we have used Definition (3.18), shows that(
d

dt
APQ(a(t))

)
0

= cPRQξ
R,

where we write for simplicity ξR = ξR(x). Let us denote aP = prP ◦ exp−1

the canonical coordinates on a neighborhood of the unit in G corresponding
to the basis eP in g, i.e. we have

(
∂
∂aP

)
e

= eP . Using the identities for the
multiplication µ and the inversion ν in the group G

T(a,b)µ · (Xa, Yb) = Ta(ρb) ·Xa + Tb(λa)Yb, Taν = −Te(λa−1) · Ta(ρa−1)
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for all a, b ∈ G and if realize that for the left translation λ and the right trans-
lation ρ the relation λe = ρe = idG holds, then we can compute(

d

dt
aQj (J1

(0,e)(τ̃−(φ̂α)0(Fl
ξ0
t (x))

◦ φ̂α ◦ Flξt ◦ φ̂−1
α ◦ τ̃(φ̂α)0(x)

))
)

0

=
(
d

dt
Dj(a−1(t)(pr2 ◦φα ◦ Flξt ◦ φ̂−1

α ◦ τ̃(φ̂α)0(x)
( , e)))Q(0)

)
0

= Dj

(
d

dt
aQ ◦ µ ◦ (ν ◦ a(t),pr2 ◦φα ◦ Flξt ◦ φ̂−1

α ◦ τ̃(φ̂α)0(x)
( , e))

)
0

(0)

= Dj

(
−
(
d

dt
aQ ◦ a(t)

)
0

+
(
d

dt
aQ ◦ pr2 ◦φα ◦ Flξt ◦ φ̂−1

α ◦ τ̃(φ̂α)0(x)
( , e)

)
0

)
(0)

= Dj

((
d

dt
aQ ◦ pr2 ◦φα ◦ Flξt ◦ φ−1

α ◦ (ϕ−1
α × idG) ◦ (tϕα(x) × idG)( , e)

)
0

)
(0)

= Dj(ξQ ◦ ϕ−1
α ◦ tϕα(x)( ))(0) = Dj(ξQ(ϕ−1

α ( )))(ϕα(x)) =
∂ξQ

∂xj
.

Thus we get (
d

dt
Γ̄Pi

)
0

= cPRQξ
RΓQj δ

j
i + δPQ

∂ξQ

∂xj
δji − δPQΓQj

∂ξj

∂xi

= cPRQξ
RΓQi +

∂ξP

∂xi
− ΓPj

∂ξj

∂xi
, (4.12)

where we denote for simplicity ΓQj = ΓQj (Γ). From Equations (4.10), (4.11)
and (4.12) we immediately obtain Equation (4.7) and this finishes the proof.

♦

The gravitational part of the lift Cξ agrees with [35] and the Yang-Mills part
with [19] and [20].

The notion of the jet prolongation of a vector field is standard (see [28]
and [25]). If (xi, yσ) are fibered coordinates of a fibered manifold Y , then the 1-
jet prolongation of a projectable vector field ζ = ζi(x)(∂/∂xi)+ζσ(x, y)(∂/∂yσ)
is

J1ζ = ζi
∂

∂xi
+ ζσ

∂

∂yσ
+
(
∂ζσ

∂xi
+
∂ζσ

∂yρ
yρi −

∂ζj

∂xi
yσj

)
∂

∂yσi
. (4.13)

Lemma 4.6. If a generator of automorphisms ξ on P is locally given by Equa-
tion (3.19), then its lift J1Cξ on the first jet prolongation of the configuration
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bundle C for the Einstein-Yang-Mills theory is expressed by

J1Cξ = ξi
∂

∂xi
−

(
∂ξl

∂xi
glj +

∂ξl

∂xj
gil

)
∂

∂gij

+

(
cPRQξ

RΓQi +
∂ξP

∂xi
− ΓPj

∂ξj

∂xi

)
∂

∂ΓPi

−

(
∂ξl

∂xi∂xk
glj +

∂ξl

∂xj∂xk
gil +

∂ξl

∂xi
glj,k +

∂ξl

∂xj
gil,k + gij,l

∂ξl

∂xk

)
∂

∂gij,k

+

(
cPRQ

∂ξR

∂xj
ΓQi +

∂ξP

∂xi∂xj
− ΓPk

∂ξk

∂xi∂xj
+ cPRQξ

RΓQi,j

−∂ξ
k

∂xi
ΓPk,j − ΓPi,l

∂ξl

∂xj

)
∂

∂ΓPi,j
. (4.14)

Proof: This follows immediately from Lemma 4.5 and Equation (4.13).
♦

Now we can proceed to the discussion of the first variation formula of the
Hilbert-Yang-Mills Lagrangian for the induced variations. We denote by

Eab =
√
g(−Gab + T ab), F iP =

√
g∇jRjiP

the Euler-Lagrange expressions of the Hilbert-Yang-Mills Lagrangian, and by
ξJV = ξJ −ΓJi ξ

i the components of the vertical part ξV of the generator of auto-
morphisms ξ with respect to the principal connection. We define the Komar-
Yang-Mills superpotential by

νξ =
1
2
√
g(∇[iξj] −RijJ ξ

J
V )ωij ,

where ∇ denotes the covariant derivative with respect to the Levi-Civita con-
nection. The first term in the Komar-Yang-Mills superpotential is the so called
Komar potential [26].

The following basic theorem clarifies the structure of the currents associated
with vector fields on the underlying principal bundle P .

Theorem 4.7. For the principal Lepage equivalent of the Hilbert-Yang-Mills
Lagrangian Θλ the Euler-Lagrange term has a chart expression

hiJ1CξdΘλ = −Eab(gacdbξc + gbcdaξ
c + gab,cξ

c)ω0

+F iP (cPRQξ
RΓQi + diξ

P − ΓPj diξ
j − ΓPi,mξ

m)ω0.

The current has a chart expression

iJ1CξΘλ = (2E ibgbjξj −F iJξJV )ωi + hdνξ

+
√
gξi[(gjcgab − gbcgja)(ηab,c − Γdabηdc) +RjkP η

P
k ] ∧ ωij . (4.15)
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Proof: We get the Euler-Lagrange term from Theorem 4.4 where we substitute
from Lemma 4.6

ξij = −
(
∂ξl

∂xi
glj +

∂ξl

∂xj
gil

)
, ξPi = cPRQξ

RΓQi +
∂ξP

∂xi
− ΓPj

∂ξj

∂xi
,

and we use the fact that ∂ξl/∂xi = diξ
l, ∂ξP /∂xi = diξ

P , because ξl and ξP

depend only on x.
Let us denote by

J1Cgξ = ξi
∂

∂xi
−
(
∂ξl

∂xi
glj +

∂ξl

∂xj
gil

)
∂

∂gij

−
(

∂ξl

∂xi∂xk
glj +

∂ξl

∂xj∂xk
gil +

∂ξl

∂xi
glj,k +

∂ξl

∂xj
gil,k + gij,l

∂ξl

∂xk

)
∂

∂gij,k

the gravitational part of the lift J1Cξ from Equation (4.14). Then we can write

iJ1CξΘλ = iJ1CgξΘλH + iJ1CξΘλYM .

The gravitational term iJ1CgξΘλH was computed in [35]

iJ1CgξΘλH = wiωi +
√
gξi(gjcgab − gbcgja)(ηab,c − Γdabηdc) ∧ ωij ,

wi = Lijξ
j + Lipj dpξ

j + Lipqj dpdqξ
j ,

Lim =
√
g(Rδim − (grqgsi − gsrgqi)gpkΓprsΓ

k
qm − gsiΓprsΓ

r
pm

+gsrΓprsΓ
i
pm − (gpsgiq − gisgqp)gpq,sm),

Lipm =
√
g(δimg

srΓprs + gipΓqqm − 2gpsΓism),

Lipqm = −1
2
√
g(2δimg

pq − δpmg
iq − δqmg

ip).

For the Yang-Mills term iJ1CξΘλYM we get

iJ1CξΘλYM = −√g 1
4
RPkjR

kj
P ξ

iωi +
√
gRijP (cPRQξ

RΓQi + diξ
P − ΓPk diξ

k)ωj

−√gRijP ξ
kηPi ∧ ωjk.

Thus for the whole current we obtain

iJ1CξΘλ = [wi −√g 1
4
RPkjR

kj
P ξ

i +
√
gRjiP (cPRQξ

RΓQj + djξ
P − ΓPk djξ

k)]ωi

+
√
gξi[(gjcgab − gbcgja)(ηab,c − Γdabηdc) +RkjP η

P
k ] ∧ ωij .

Now we want to write the current as in Equation (4.15). The first varia-
tion formula implies that the covariance identity ∂J2Cξλ = 0 is equivalent to
hiJ1CξdΘλ+hdiJ1CξΘλ = 0. Since the contact part of the current is annihilated
by the horizontalization h, we get

−Eab(gacdbξc + gbcdaξ
c + gab,cξ

c)

+F iP (cPRQξ
RΓQi + diξ

P − ΓPj diξ
j − ΓPi,mξ

m) + div
i = 0, (4.16)

vi = wi −√g 1
4
RPkjR

kj
P ξ

i +
√
gRjiP (cPRQξ

RΓQj + djξ
P − ΓPk djξ

k).
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Now we use the same strategy as in [35] and write vi in the form

vi = M i
jξ
j +M ip

j dpξ
j +M ipq

j dpdqξ
j +N i

Rξ
R +N ij

R djξ
R, (4.17)

M i
j = Lij −

√
g
1
4
RPklR

kl
P δ

i
j , M

ip
j = Lipj −

√
gRpiQΓQj , M

ipq
j = Lipqj

N i
R =

√
gRjiP c

P
RQΓQj , N

ij
R =

√
gRjiR .

If we substitute Equation (4.17) into Equation (4.16) we get

−Eab(2gbcdaξc + gab,cξ
c) + F iP (cPRQξ

RΓQi + diξ
P − ΓPj diξ

j − ΓPi,mξ
m)

+diM i
jξ
j + (Mp

j + diM
ip
j )dpξj + (Mqp

j + diM
ipq
j )dqdpξj +M ipq

j didqdpξ
j

+diN i
Jξ
J + (Np

J + diN
ip
J )dpξJ +Nqp

J dqdpξ
J

= (−Eabgab,j −F iPΓPi,j + diM
i
j)ξ

j + (−2Epbgbj −FpRΓRj +Mp
j + diM

ip
j )dpξj

+(Mqp
j + diM

ipq
j )dqdpξj +M ipq

j didqdpξ
j

+(F iP cPJQΓQi + diN
i
J)ξJ + (FpJ +Np

J + diN
ip
J )dpξJ +Nqp

J dqdpξ
J = 0.

The last equation holds for every generator of automorphisms iff the following
identities hold

−Eabgab,j −F iPΓPi,j + diM
i
j = 0, (4.18)

−Epb2gbj −FpRΓRj +Mp
j + diM

ip
j = 0, (4.19)

1
2
(Mqp

j +Mpq
j ) + diM

ipq
j = 0, (4.20)

M ipq
j +Mqip

j +Mpqi
j = 0, (4.21)

F iP cPJQΓQi + diN
i
J = 0, (4.22)

FpJ +Np
J + diN

ip
J = 0, (4.23)

Nqp
J +Npq

J = 0. (4.24)

Since N ij
R =

√
gRjiR and RjiP is antisymmetric in the upper indices, the last

identity is trivially satisfied. We have

M i
jξ
j +M ip

j dpξ
j +M ipq

j dpdqξ
j

= M i
jξ
j + dp(M

ip
j ξ

j)− dpM
ip
j ξ

j + dq(M
ipq
j dpξ

j)− dqM
ipq
j dpξ

j

= M i
jξ
j − dpM

ip
j ξ

j + dpdqM
ipq
j ξj + dp(M

ip
j ξ

j) + dq(M
ipq
j dpξ

j)− dp(dqM
ipq
j ξj)

= (M i
j − dpM

ip
j + dpdqM

ipq
j )ξj + dp((M

ip
j − dqM

ipq
j )ξj +M ipq

j dqξ
j)

We define a (n− 2)-form ηξ by

ηξ =
1
2
((M ip

j − dqM
ipq
j )ξj +M ipq

j dqξ
j)ωip.
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Since dxk ∧ ωip = −δki ωp + δkpωi we have

hdηξ =
1
2
dk((M

ip
j − dqM

ipq
j )ξj +M ipq

j dqξ
j)dxk ∧ ωip

= −1
2
di((M

ip
j − dqM

ipq
j )ξj +M ipq

j dqξ
j)ωp

+
1
2
dp((M

ip
j − dqM

ipq
j )ξj +M ipq

j dqξ
j)ωi

=
1
2
dp((M

ip
j −Mpi

j − dq(M
ipq
j −Mpiq

j ))ξj + (M ipq
j −Mpiq

j )dqξj)ωi.

Thus we get

(M i
jξ
j +M ip

j dpξ
j +M ipq

j dpdqξ
j)ωi = (M i

j − dpM
ip
j + dpdqM

ipq
j )ξjωi

+
1
2
dp((M

ip
j +Mpi

j − dq(M
ipq
j +Mpiq

j ))ξj + (M ipq
j +Mpiq

j )dqξj)ωi

+
1
2
dp((M

ip
j −Mpi

j − dq(M
ipq
j −Mpiq

j ))ξj + (M ipq
j −Mpiq

j )dqξj)ωi

= (M i
j − dpM

ip
j + dpdqM

ipq
j )ξjωi

+
1
2
dp((M

ip
j +Mpi

j − dq(M
ipq
j +Mpiq

j ))ξj + (M ipq
j +Mpiq

j )dqξj)ωi + hdηξ.

Taking into account Equations (4.20) and (4.21), we have

1
2
(M ip

j +Mpi
j − dq(M

ipq
j +Mpiq

j ))ξj + (M ipq
j +Mpiq

j )dqξj

= −dsMsip
j ξj +

1
2
dqM

qip
j ξj − 1

2
Mqip
j dqξ

j = −1
2
dq(M

qip
j ξj).

If we set

µξ =
1
6
dq(M

ipq
j ξj)ωip,

then

hdµξ =
1
6
dkdq(M

ipq
j ξj)dxk ∧ ωip = −1

6
didq(M

ipq
j ξj)ωp +

1
6
dpdq(M

ipq
j ξj)ωi

=
1
6
dpdq((M

ipq
j −Mpiq

j )ξj)ωi = −1
6
dpdq((M

qip
j +Mpqi

j +Mpiq
j )ξj)ωi

= −1
2
dpdq(M

qip
j ξj)ωi.

Therefore we obtain

(M i
jξ
j +M ip

j dpξ
j +M ipq

j dpdqξ
j)ωi = (M i

j − dpM
ip
j + dpdqM

ipq
j )ξjωi + hdτξ,
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where

τξ = µξ + ηξ

=
1
6
dq(M

ipq
j ξj)ωip +

1
2
((M ip

j − dqM
ipq
j )ξj +M ipq

j dqξ
j)ωip

=
1
6
(3M ip

j ξ
j − 3dqM

ipq
j ξj + 3M ipq

j dqξ
j + dqM

ipq
j ξj +M ipq

j dqξ
j)ωip

=
1
6
(3M ip

j ξ
j − 2dqM

ipq
j ξj + 4M ipq

j dqξ
j)ωip.

Taking into account Equations (4.19), (4.20) and (4.21), we have

M i
j − dpM

ip
j + dpdqM

ipq
j = E ib2gbj + F iRΓRj − dp(M

pi
j +M ip

j − dqM
ipq
j )

= E ib2gbj + F iRΓRj + dpdq(M
qip
j +Mpiq

j +M ipq
j ) = E ib2gbj + F iRΓRj .

Thus the first part (”M” part) of the current has the form

(M i
jξ
j +M ip

j dpξ
j +M ipq

j dpdqξ
j)ωi = (E ib2gbj + F iRΓRj )ξjωi + hdτξ.

We can proceed similarly for the second part (”N” part) of the current with
an obvious modification - the highest M ipq

j can be replaced by zero and we have
to use the identities (4.23) and (4.24). So we define κξ instead of ηξ

κξ =
1
2
N ip
J ξ

Jωip.

Equation (4.24) implies that we need not introduce any form corresponding
to µξ. From Equations (4.23) and (4.24) we get

N i
J − dpN

ip
J = −F iJ − dp(N

pi
J +N ip

J ) = −F iJ .

Thus for the whole current we have

iJ1CξΘλ = (E ib2gbj + F iRΓRj )ξjωi + hdτ −F iJξJωi + hdκξ

+
√
gξi[(gjcgab − gbcgja)(ηab,c − Γdabηdc) +RkjP η

P
k ] ∧ ωij

= [(2E ibgbjξj −F iJ(ξJ − ΓJj ξ
j)]ωi + hdνξ

+
√
gξi[(gjcgab − gbcgja)(ηab,c − Γdabηdc) +RkjP η

P
k ] ∧ ωij ,

where

νξ = τξ + κξ =
1
6
(3M ip

j ξ
j − 2dqM

ipq
j ξj + 4M ipq

j dqξ
j + 3N ip

J ξ
J)ωip

=
1
6
(3Lipj ξ

j − 2dqL
ipq
j ξj + 4Lipqj dqξ

j − 3
√
gRpiQΓQj ξ

j + 3N ip
J ξ

J)ωip.

This is nearly the required expression for the current. To finish this proof it
suffices to show that the superpotential νξ has the demanded form. But from
the identities

dq
√
g =

√
gΓrqr, dqg

ip = −gkpΓikq − gikΓpkq
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we get

dqL
ipq
j = −1

2
dq
√
g(2δijg

pq − δpj g
iq − δqj g

ip)

−1
2
√
g(2δijdqg

pq − δpj dqg
iq − δqjdqg

ip) = −1
2
√
gΓrqr(2δ

i
jg
pq − δpj g

iq − δqj g
ip)

+
1
2
√
g(2δij(g

kqΓpkq + gpkΓqkq)− δpj (g
kqΓikq + gikΓqkq)− δqj (g

kpΓikq + gikΓpkq))

= −1
2
√
gΓrqr(2δ

i
jg
pq − δpj g

iq) +
1
2
√
ggipΓrjr

+
1
2
√
g(2δij(g

kqΓpkq + gpkΓqkq)− δpj (g
kqΓikq + gikΓqkq))−

1
2
√
g(gkpΓikj + gikΓpkj)

=
1
2
√
g(2δij(g

kqΓpkq + gpkΓqkq − gpqΓrqr)− δpj (g
kqΓikq + gikΓqkq − giqΓrqr))

+
1
2
√
g(gipΓrjr − gkpΓikj − gikΓpkj)

=
1
2
√
g(2δijg

kqΓpkq − δpj g
kqΓikq) +

1
2
√
g(gipΓrjr − gkpΓikj − gikΓpkj).

Thus we have

3Lipj ξ
j − 2dqL

ipq
j ξj + 4Lipqj dqξ

j = 3
√
g(δijg

srΓprs + gipΓqqj − 2gpsΓisj)ξ
j

−√g(2δijgkqΓ
p
kq − δpj g

kqΓikq)ξ
j −√g(gipΓrjr − gkpΓikj − gikΓpkj)ξ

j

−2
√
g(2δijg

pq − δpj g
iq − δqj g

ip)dqξj =
√
g(3δijg

srΓprs + 3gipΓqqj − 6gpsΓisj
−2δijg

kqΓpkq + δpj g
kqΓikq − gipΓrjr + gkpΓikj + gikΓpkj)ξ

j

−2
√
g(2δijg

pq − δpj g
iq − δqj g

ip)dqξj

=
√
g(δij(3g

srΓprs − 2gkqΓpkq) + δpj g
kqΓikq + 3gipΓqqj − 6gpsΓisj

−gipΓrjr + gkpΓikj + gikΓpkj)ξ
j − 2

√
g(2δijg

pq − δpj g
iq − δqj g

ip)dqξj

=
√
g(δijg

srΓprs + δpj g
kqΓikq + 2gipΓqqj − 5gpsΓisj + gikΓpkj)ξ

j

−2
√
g(2δijg

pq − δpj g
iq − δqj g

ip)dqξj .

Antisymmetrizing the last expression in i and p, we get

1
2
[
√
g(−5gpsΓisj + 5gisΓpsj + gikΓpkj − gpkΓikj)ξ

j

−2
√
g(2δijg

pq − 2δpj g
iq − δpj g

iq + δijg
pq)dqξj ]

=
1
2
√
g(−6gpsΓisj + 6gisΓpsj)ξ

j − 3
√
g(δijg

pq − δpj g
iq)dqξj

= 3
√
g(−gpsΓisjξj + gisΓpsjξ

j − gpqdqξ
i + giqdqξ

p)

= 3
√
g(gis(dsξp + Γpsjξ

j)− gps(dsξi + Γisjξ
j))

= 3
√
g(gis∇sξp − gps∇sξi) = 3

√
g∇[iξp].
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Therefore we finally obtain

νξ =
1
6
(3
√
g∇[iξp] − 3

√
gRpiQΓQj ξ

j + 3N ip
J ξ

J)ωip

=
1
2
√
g(∇[iξp] −RpiQΓQj ξ

j +RpiJ ξ
J)ωip =

1
2
√
g(∇[iξp] −RipJ (ξJ − ΓJj ξ

j))ωip

=
1
2
√
g(∇[iξp] −RipJ ξ

J
V )ωip.

This finishes the proof.

♦

Since we could add the contact part of dνξ to the last term, we see that the
current can be written in the form

iJ1CξΘλ = (2E ijξj −F iJξJV )ωi + dνξ + η, (4.25)

where E ij = E ibgbj . The first term in (4.25) vanishes along solutions of the
Euler-Lagrange (i.e. Einstein-Yang-Mills) equations, the second term is exact,
the third term η is contact. For every section γ of C we have

J1γ∗iJ1CξΘλ = [2(E ij ◦ J2γ)ξj − (F iJ ◦ J2γ)ξJV ]ωi + dj1γ∗νξ. (4.26)

If γ is a solution of the Euler-Lagrange equations, i.e. if E ij ◦J2γ = 0, F iJ ◦J2γ =
0, then J1γ∗iJ1CξΘλ is an exact form.

Corollary 4.8. Let γ be a section of C. Then γ is an extremal iff for every
generator of automorphisms ξ on P

dj1γ∗iJ1CξΘλ = 0 (4.27)

holds.

Proof: We have seen from the covariance identity (3.14) that Cξ is the gen-
erator of invariance transformations of λ. If γ is an extremal, we get from
Noether’s theorem that Equation (4.27) holds for every generator of automor-
phisms ξ on P . Conversely, from Equation (4.25) we get for the boundary term

hdiJ1CξΘλ = (2diE ijξj + 2E ijdiξj − diF iJξJV −F iJdiξJV )ω0.

But from Equation (4.27) we see that J2γ∗hdiJ1CξΘλ = 0 holds for every
generator of automorphisms ξ on P . This implies that E ij◦J2γ = 0, F iJ◦J2γ = 0,
i.e. γ is an extremal.

♦

Corollary 4.8 states that for this type of invariance of the gauge natural Hilbert-
Yang-Mills Lagrangian, the differential conservation laws completely determine
the Euler-Lagrange equations.
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Examples

In this chapter we shall give some examples of the previous con-
cepts. We compute the Komar-Yang-Mills superpotential for some
solutions of the Einstein-Yang-Mills equations and we comment on
the conserved quantities (mass, electric charge, angular momentum).
It seems that the formulae, representing the most general superpo-
tentials, are new; we shall show that they include special cases which
were described in literature. The current evaluated along an extremal
can be computed directly from the principal Lepage equivalent using
the explicit formula (4.14) for the lift J1Cξ or by Equation (4.26) as
the exterior derivative of the Komar-Yang-Mills superpotential eval-
uated along a solution. This is straightforward but the result for an
arbitrary generator of automorphisms of the structure bundle is quite
long. In this chapter we use the terminology from the books [21, 56].

5.1 Levi-Civita-Bertotti-Robinson Solution

First we apply the result of the previous chapter to the Levi-Civita-Bertotti-
Robinson solution of the Einstein equations. This is one of the simplest exam-
ples. We take as the structure bundle the trivial bundle (X×U(1),pr1, X, U(1))
over the Levi-Civita-Bertotti-Robinson spacetime (X, g) (see e.g. [56] and for
some details and interpretations [14, 39]), we suppose there exist coordinates
(t, r, θ, ϕ) on X such that the metric g is given by

g =
e2

r2
[−dt2 + dr2 + r2(dθ2 + sin2 θ dϕ2)].
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This metric g together with the U(1)-connection 1

Γ = −2
e

r
(dt+ dr)

is a solution of the Einstein-Maxwell equations, i.e. a solution of Equations (4.6)
corresponding to the Hilbert-Yang-Mills Lagrangian λ with the only component
of the Ad-invariant form h on u(1) equal to 1. We denote this solution by γLBR.

We write a generator ξ of automorphisms of the structure bundle in the form

ξ = ξ1
∂

∂t
+ ξ2

∂

∂r
+ ξ3

∂

∂θ
+ ξ4

∂

∂ϕ
+ ζRe1 , (5.1)

where Re1 denotes the right invariant vector field on U(1) corresponding to
the base vector e1 in u(1). Then we get the following coordinate expression
for the pull-back J1γ∗νξ of the Komar-Yang-Mills superpotential νξ along the
solution γLBR:

J1γ∗LBRνξ =

(
− 2ζe− e2

(
2
r
(ξ1 + 2 ξ2) +

∂ξ1

∂r
+
∂ξ2

∂t

))
sin θ dθ ∧ dϕ

+

(
∂ξ3

∂t
+

1
r2
∂ξ1

∂θ

)
e2 sin θ dr ∧ dϕ−

(
sin θ

∂ξ4

∂t
+

1
r2 sin θ

∂ξ1

∂ϕ

)
e2 dr ∧ dθ

+

(
∂ξ3

∂r
− 1
r2
∂ξ2

∂θ

)
e2 sin θ dt ∧ dϕ+

(
1

r2 sin θ
∂ξ2

∂ϕ
− sin θ

∂ξ4

∂r

)
e2 dt ∧ dθ

+

(
2 cos θ ξ4 − 1

sin θ
∂ξ3

∂ϕ
+ sin θ

∂ξ4

∂θ

)
e2

r2
dt ∧ dr.

If we choose ξ as ζRe1 , we get

J1γ∗LBRνζRe1 = −2ζe sin θ dθ ∧ dϕ.

Taking ζ as an appropriate constant and integrating on spatial spheres we obtain
the electric charge e.

5.2 Reissner-Nordström Solution

Now we apply the result of the previous chapter to the Reissner-Nordström
solution of the Einstein equations. We take as the structure bundle the triv-
ial U(1)-bundle (X × U(1),pr1, X, U(1)) over the Reissner-Nordström space-
time (X, g) (see e.g. [21]), we suppose there exist coordinates (t, r, θ, ϕ) on X
such that the metric g is given by

g = −
(

1− 2
m

r
+
e2

r2

)
dt2 +

(
1− 2

m

r
+
e2

r2

)−1

dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
.

1We will not write the base vector e1 in u(1) for the U(1)-connections explicitly.
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This metric g together with the U(1)-connection

Γ = −2
e

r
(dt+ dr)

is a solution of the Einstein-Maxwell equations. We denote this solution by γRN .
For a generator ξ of automorphisms of the structure bundle as in (5.1) we get

the following coordinate expression for the pull-back J1γ∗RNνξ of the Komar-
Yang-Mills superpotential νξ along the solution γRN :

J1γ∗RNνξ = sin θ

(
− 2ζe− 2

r

(
2 ξ2e2 + ξ1e2 + ξ1mr

)
− ∂ξ1

∂r
s− r4

s

∂ξ2

∂t

)
dθ ∧ dϕ

+sin θ

(
r4

s

∂ξ3

∂t
+
∂ξ1

∂θ

)
dr ∧ dϕ−

(
r4 sin θ
s

∂ξ4

∂t
+

1
sin θ

∂ξ1

∂ϕ

)
dr ∧ dθ

+sin θ

(
2
r
sξ3 + s

∂ξ3

∂r
− ∂ξ2

∂θ

)
dt ∧ dϕ

−

(
2
r
s sin θξ4 + s sin θ

∂ξ4

∂r
− 1

sin θ
∂ξ2

∂ϕ

)
dt ∧ dθ

+

(
2 cos θ ξ4 − 1

sin θ
∂ξ3

∂ϕ
+ sin θ

∂ξ4

∂θ

)
dt ∧ dr, s = r2 − 2mr + e2.

In particular, if we choose ξ as ξ1(∂/∂t), where ξ1 is constant, then we have

J1γ∗RNνξ1(∂/∂t) = −2ξ1
(
m+

e2

r

)
sin θ dθ ∧ dϕ.

Thus for an appropriate choice of the constant ξ1 we obtain, after integrating
on spatial spheres at spatial infinity, the mass m.

If we choose ξ as ζRe1 , we get

J1γ∗RNνζRe1 = −2ζe sin θ dθ ∧ dϕ.

The electric charge e can be found by taking ζ as an appropriate constant and
integrating over spatial spheres.

5.3 Kerr-Newman Solution

Now we consider the Kerr-Newman solution of the Einstein equations. We
take as the structure bundle the trivial U(1)-bundle (X × U(1),pr1, X, U(1))
over the Kerr-Newman spacetime (X, g) (see e.g. [56]), we suppose there exist
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coordinates (t, r, θ, ϕ) on X such that the metric g is given by

g = −
(
1− 2mr − e2

u

)
dt2 +

u

s
dr2 + u dθ2 + sin2 θ

(
r2 + a2

+
a2 sin2 θ

u
(2mr − e2)

)
dϕ2 − a sin2 θ

u
(2mr − e2)(dt⊗ dϕ+ dϕ⊗ dt),

s = r2 + a2 + e2 − 2mr, u = r2 + a2 cos2 θ.

This metric g together with the U(1)-connection

Γ = −2e
r

u
(dt− a sin2 θ dθ)

is a solution of the Einstein-Maxwell equations. We denote this solution by γKN .
The Komar-Yang-Mills superpotential νξ along the solution γKN for the

general generator ξ of automorphisms of the structure bundle (5.1) is too long.
We will consider only a few special choices of the generator. If we choose ξ as
ξ1(∂/∂t), where ξ1 is constant, we have

J1γ∗KNνξ1(∂/∂t) = 2ξ1
sin θ
u3

[A(a2 + r2) dθ ∧ dϕ−B sin θ cos θa2 dr ∧ dϕ

−Aadt ∧ dθ −Ba cos θ dt ∧ dr],
A = −mr4 +ma4 cos4 θ − r3e2 + 3 re2a2 cos2 θ,

B = (2mr − e2)a2 cos2 θ + 2mr3 + 3 e2r2.

Thus for an appropriate choice of the constant ξ1 we obtain, after integrating
on spatial spheres at spatial infinity, the mass m.

If we choose ξ as ξ4(∂/∂ϕ), where ξ4 is constant, then we have

J1γ∗KNνξ4(∂/∂ϕ) = 2ξ4
sin θ
u3

(−Ca sin2 θ dθ ∧ dϕ−Ba3 sin3 θ cos θ dr ∧ dϕ

+Ddt ∧ dθ − Ecotgθ dt ∧ dr),
C = a4(−mr2 + a2m+ re2) cos4 θ + a2r(−4mr3 + 5 e2r2 + 3 a2e2) cos2 θ

−r3(3mr3 + a2mr + a2e2),

D = a6(m− r) cos6 θ + a4(2 re2 + 2mr2 − a2m− 3 r3) cos4 θ − 3 a2r(r4

−mr3 + e2r2 + a2e2) cos2 θ + r3(−r4 + 2mr3 − e2r2 + a2mr + a2e2),

E = a6 cos6 θ + a4(e2 + 3 r2 − 2mr) cos4 θ − a2(3 e2r2 + 2mr3 + a2e2

−2 a2mr − 3 r4) cos2 θ + r2(r4 + 2 a2mr + 3 a2e2).

Thus for an appropriate choice of the constant ξ4 we obtain, after integrating
on spatial spheres at spatial infinity, the angular momentum ma.

If we choose ξ as ζRe1 , where ζ is constant, then we get

J1γ∗KNνζRe1 = 2ζe
sin θ
u2

[(−r2 + a2 cos2 θ)(a2 + r2) dθ ∧ dϕ

−a2r sin θ cos θ dr ∧ dϕ+ a(−r2 + a2 cos2 θ) dt ∧ dθ − racotgθ dt ∧ dr].

Finding the electric charge e is easy now: it can be obtained by taking ζ as an
appropriate constant and integrating on spatial spheres at spatial infinity.
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5.4 Colored Black Hole

We take one of the simplest non-Abelian black hole solution of the Einstein-
Yang-Mills equations - one of the so called colored black holes. We take as
the structure bundle the trivial SU(2)-bundle (X × SU(2),pr1, X, SU(2)) over
the Reissner-Nordström-like spacetime (X, g) (see e.g. [58] and for some details
also [5, 11]), we suppose there exist coordinates (t, r, θ, ϕ) on X such that the
metric g is given by

g = −
(

1− 2
m

r
+
e2 + q2

r2

)
dt2 +

(
1− 2

m

r
+
e2 + q2

r2

)−1

dr2

+r2
(
dθ2 + sin2 θ dϕ2

)
.

Let eP for 1 ≤ P ≤ 3 be a basis of the Lie algebra su(2) given by eP = − i
2σP

with σP being the Pauli matrices. Then for the structure constants we have
cRPQ = εPQR. This metric g together with the SU(2)-connection

Γ =
(
−2

e

r
(dt+ dr) + 2 q(1− cos θ) dϕ

)
e3

is a solution of the Einstein-Yang-Mills equations, i.e. a solution of Equa-
tions (4.6) corresponding to the Hilbert-Yang-Mills Lagrangian λ with the com-
ponents of the Ad-invariant form h on su(2) given by hPQ = δPQ (h is up to a
factor the Killing form of su(2)). We denote this solution by γCBH .

We write a generator ξ of automorphisms of the structure bundle in the form

ξ = ξ1
∂

∂t
+ ξ2

∂

∂r
+ ξ3

∂

∂θ
+ ξ4

∂

∂ϕ
+ ζPReP , (5.2)

where ReP denote the right invariant vector fields on SU(2) corresponding to
the base vectors eP in su(2). Then we get the following coordinate expression
for the pull-back J1γ∗CBHνξ of the Komar-Yang-Mills superpotential νξ along
the solution γCBH :

J1γ∗νξ =

(
2
r
[ξ1(q2 − e2 −mr)− 2ξ2e2] + 4ξ4eq(1− cos θ)− 2ζ3e

−s∂ξ
1

∂r
− r4

s

∂ξ2

∂t

)
sin θ dθ ∧ dϕ+

(
r4

s

∂ξ3

∂t
+
∂ξ1

∂θ

)
sin θ dr ∧ dϕ

−

(
r4 sin θ
s

∂ξ4

∂t
+

1
sin θ

∂ξ1

∂ϕ

)
dr ∧ dθ +

(
2
r
sξ3 + s

∂ξ3

∂r
− ∂ξ2

∂θ

)
sin θ dt ∧ dϕ

−

(
2s
r

sin θξ4 + s sin θ
∂ξ4

∂r
− 1

sin θ
∂ξ2

∂ϕ

)
dt ∧ dθ

+

(
− 4eq

r3
(ξ1 + ξ2) + 2(cos θ − 2q2

r2
(1 + cos θ))ξ4 − 2

q

r2
ζ
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− 1
sin θ

∂ξ3

∂ϕ
+ sin θ

∂ξ4

∂θ

)
dt ∧ dr, s = r2 − 2mr + e2 + q2.

It is easy to see that, similarly as before, the mass m corresponds to ∂/∂t and
the electric charge e to Re3 . Moreover, if we choose ξ as ξ4(∂/∂φ), where ξ4

is constant, then after integrating on spatial spheres we see that eq must be a
constant.
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induced variation, 34
inner automorphism, 38
invariance transformation, 32

jet, 3
invertible, 5
regular, 5

jet prolongation, 9, 24

(k, r)-velocities, 7
k-contact component of a differential

form, 26
Kerr-Newman solution, 56
Komar potential, 47
Komar-Yang-Mills superpotential, 47

Lagrange function, 24
Lagrangian of order r, 24

Aut(P )-covariant, 32
gauge natural, 30

Lepage equivalent, 26
Lepage form, 26
Levi-Civita-Bertotti-Robinson solution,

54

morphism of fibered manifolds, 5
multiindex, 5

natural bundle functor, 15

orbit reduction, 37

principal Lepage equivalent, 28
principal prolongation of order (s, r) of

Lie group G, 9
projection, 5
pullback, 10

(r, s, q)-jet, 13
r-frame, 8
r-jet of f at x, 3
r-jet prolongation, 4
r-th contact at zero, 3
r-th jet group in dimension n, 7
Reissner-Nordström solution, 55

(s, r)-th principal prolongation of the
principal bundle P , 10

source, 3
source projection, 3
stable point, 24
structure bundle, 29

tangent to order r at x ∈ X, 3
target, 4
target projection, 4
total space, 5

variation, 24
variational function, 24
variational derivative, 25
velocities of order r and dimension k,
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