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The geometric structure of gauge natural theories is investigated. We study
especially the Einstein-Yang-Mills theory, an example of gauge natural theory,
describing the interaction of gravity with the Yang-Mills field. We consider the
Yang-Mills part of the theory with a general Lie group G, at no cost in compli-
cations, the choice G = U(1) corresponds to electromagnetism. The global vari-
ational functional, defined by the Hilbert-Yang-Mills Lagrangian over a smooth
manifold, is investigated within the framework of prolongation theory of prin-
cipal fiber bundles, and global variational theory on fibered manifolds. The
principal Lepage equivalent of this Lagrangian is constructed, and the corre-
sponding infinitesimal first variation formula is obtained. It is shown, in partic-
ular, that the Noether currents, associated with isomorphisms of the underlying
geometric structures, split naturally to several terms, one of which is exterior
derivative of the Komar-Yang-Mills superpotential. Consequences of invariance
of the Hilbert-Yang-Mills Lagrangian under isomorphisms of underlying geomet-
ric structures such as Noether’s conservation laws for global currents are then
established. We give also some examples of Komar-Yang-Mills superpotentials
corresponding to several solutions of the Einstein equations.
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Je zkoumana geometrickd struktura prirozené kalibracnich teorii. Studujeme
predevsim Einsteinovu-Yangovu-Millsovu teorii, priklad pfirozené kalibraéni teo-
rie, popisujici interakci gravitace s Yangovym-Millsovym polem. Yangovu-Mill-
sovu ¢ast teorie uvazujeme, bez vétsich komplikaci, s obecnou Lieovou grupou G,
volba G = U(1) odpovida elektromagnetismu. Globélni variaéni funkcional,
definovany Hilbertovym-Yangovym-Millsovym lagrangianem nad hladkou vari-
etou, je zkouman pomoci prolongaéni teorie hlavnich fibrovanych prostoru a
globalni varia¢ni teorie na fibrovanych varietach. Je zkonstruovan hlavni Lepa-
geuv ekvivalent tohoto lagrangidnu a ziskana odpovidajici infinitezimalni prvn{
varia¢ni formule. Zvlasté je ukazéano, ze Noetherovské proudy, asociované s izo-
morfismy podkladovych geometrickych struktur, se pfirozené $tépi na nékolik
¢lenu, jeden z nich je vnéjsi derivace Komarova-Yangova-Millsova superpoten-
cialu. Pak jsou uvedeny dusledky invariance Hilbertova-Yangova-Millsova la-
grangianu vuci izomorfismum podkladovych geometrickych struktur, jako Noe-
therovské zakony zachovani pro globalni proudy. Predkladame také priklady
Komarova-Yangova-Millsova superpotencidlu pro nékolik feseni Einsteinovych
rovnic.
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Chapter 1

Introduction

The goal of this thesis is to investigate the geometric structure of gauge natural
theories. The main part of this work is devoted to the global variational for-
mulation of the Einstein-Yang-Mills theory. We decided to include the proofs
in this thesis, in the hope that it will be more readable, comprehensible, and
controllable. It can serve also as a brief introductory text to the study of the
gauge natural structure of classical field theories.

To get a description of physical and geometrical phenomena, many authors
prefer classical coordinate approach, and use classical concepts of variations;
global and structure aspects of the theory have often been left quite aside. It
seems that one of the main reasons for this consist in indistinguishable possibil-
ities how to replace a basic notion for globalization, the Poincaré-Cartan form
in the first order variational calculus, with its suitable generalization for higher
order problems.

Our exposition of the subject is based on the prolongation theory of principal
fiber bundles due to Kolaf ([25, 34] and the references therein) and the general
variational theory on fibered manifolds due to Krupka (see e.g. [8, 30, 31]). We
are led to a definition of a gauge natural structure of gauge natural field theories.
We remark that similar approach is in [16]. We use Lepage forms and Koldi’s
prolongation theory with the aim to give new, exact exposition on the Hilbert-
Yang-Mills functional. We also apply the theory to several known examples.
Our results agree with known predictions from theoretical physics.

The trends to extend coordinate understanding of physical laws and phe-
nomena to smooth manifolds have successfully modified many disciplines of
mathematics and mathematical physics. First steps, emphasizing the geometric
structure of the Einstein-Yang-Mills theory, were made by Bleecker [4]. Fatibene
and Francaviglia [16] interpreted the Einstein-Yang-Mills theory by means of a
variational principle for sections of fiber bundles; the underlying variational con-
cepts are Lepage forms (Krupka [28, 29]), generalizing the well-known concept
of the first order Poincaré-Cartan form.

Our contribution in this thesis consists in the following innovations. We
prove the Utiyama-like theorem for the Einstein-Yang-Mills theory by apply-
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ing the orbit reduction method, a powerful method for computing invariants
of group actions. We systematically use the principal prolongation theory of
principal fiber bundles; in particular, the prolongation theory gives us a general
formula for prolongations of the generators of automorphisms of the underlying
structure bundle to configuration bundle. We also give a new direct proof for the
splitting of the currents in the Einstein-Yang-Mills theory into three summands,
one of which is the exterior derivative of the Komar-Yang-Mills superpotential.
We show that the theory allows us to compute the most general expression for
the Komar-Yang-Mills superpotential, and we find an explicit expression for
several solutions of the Einstein equations.

This work differs conceptually from [16] in several aspects. We prefer differ-
ential forms, which describe the underlying global structures of the theory. The
main reason for this consists in the fact that the first variation formula con-
tains the exterior derivative operator d. In particular, d is an essential operator,
describing the global structure of many variational constructions (see [31]). It
should also be pointed out that our equations of motion for the Einstein-Yang-
Mills fields differ from the equations derived in [16].

The thesis is organized as follows. Chapter 2 is devoted to main definitions
and results of the theory of gauge natural bundles and operators. This geometric
background of many physical theories is well suited for the description of their
invariance properties like the independence on diffeomorphisms and the gauge
transformations. In Chapter 3 we give a survey of the general variational theory
and we focus our attention on the concepts needed in the Einstein-Yang-Mills
theory. A basic element of the theory is the so called principal Lepage form
introduced in [28], a Lepage equivalent of the second order Lagrangian A, that
enjoys similar properties as the first order Poincaré-Cartan form. In Chapter 4
we study the geometric structure of the Einstein-Yang-Mills theory. The gravi-
tational field and the Yang-Mills field are considered together as a section of an
appropriate fibered manifold. We introduce the Hilbert-Yang-Mills functional,
whose Lagrangian A is the sum of the Hilbert Lagrangian for a free metric field
on a manifold X, and the Yang-Mills Lagrangian for a principal connection
field on X. We derive the principal Lepage equivalent of the Hilbert-Yang-Mills
Lagrangian and give the corresponding (global, infinitesimal) first variation for-
mula. We analyze the invariance of A\ with respect to isomorphisms of underlying
geometric structures, the manifold X and a principal G-bundle over X. Fur-
ther we discuss the first variation formula for induced variations. In Chapter 5,
we study some examples. We analyze the Komar-Yang-Mills superpotential for
some solutions of the Einstein-Yang-Mills equations: the Levi-Civita-Bertotti-
Robinson solution, the Reissner-Nordstrom solution, the Kerr-Newman solution
and the so called embedded Abelian solution (the colored black hole); further
we comment on the conserved quantities.



Chapter 2

Gauge Natural Bundles and
Operators

A fiber bundle is the generalization of the well known tangent space.
Bundles play a very important role in mathematics as well as in
physics. For example the jet bundle is the main structure, which
appears in the calculus of variations, and gauge natural bundles serve
in theoretical physics as configuration spaces. Geometric objects
from differential geometry and matter fields from physics can be
considered as sections of some bundles. In this chapter we introduce
jets, gauge natural bundles and their operators. For the notation
and terminology in this chapter we refer to [25, 34].

2.1 Jets and Gauge Natural Bundles

Two curves 7,6 : R— X in a manifold X have r-th contact at zero and we
write v ~,. §, if for every smooth function ¢ on X the difference ¢ oy — ¢ o
vanishes to r-th order at 0 € R, i.e. all derivatives up to order r of the difference
vanish at 0 € R (v ~¢ d means v(0) = §(0)). The relation ~, is obviously
an equivalence relation. Two maps f,g : X —Y between two manifolds X
and Y are tangent to order r at z € X, if for every curve v : R— X with
v(0) = z holds f o+ ~, go~. This is an equivalence relation too and the
equivalence class whose representative is a map f is called r-jet of f at z
(or simply a jet) and is denoted by J.f. The set of all r-jets of X into Y
is denoted by J"(X,Y). The map J.f +— z sending a jet to its source is
called the source projection and is denoted by «. The map JLf — f(x)
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sending a jet to its target is called the target projection and is denoted
by 5. We denote by 7%, 0 < s < r the canonical projection J,f — J.f
of r-jets into s-jets. We write J.(X,Y) or J"(X,Y), for the set of all r-jets
of X into Y with source z € X or target y € Y, respectively, and J3(X,Y), =
JI(X,Y)NJ(X,Y),. Themap J'f: X — J"(X,Y) given by J" f(x) = J. f is
called the r-jet prolongation of f: X —Y.

The following theorem can serve as an equivalent definition of a jet (as in [34]
or [32]).

Theorem 2.1. Two maps f,g : X =Y satisfy J,f = J,g iff there exists a
chart (U, ) at x and a chart (V,4) at f(x) such that

Do fop™)(p(x) = D*(Wogop ") (p()) (2.1)
holds for each k, 0 < k <.

Proof: First we remark that in components, (f?) = (y?ofop~!) = 1o fop~t,
(gP) = (WPogop )y =1ogopt 1<p<dim(Y) the condition (2.1) for
f, g to be tangent to order r at x € X is equivalent to the following condition:
7(x) = g(x) and

DilDiQ s lefp(so(x)) = DilDi2 s legp(¢(x))

for each k, 1 < k <r, where 1 < iy,ia,...,ixp <n=dim(X), i.e. all the partial
derivatives up to order r of the components fP and g” coincide at (). In fact,
its enough to recall the identity from differential calculus for a map f from some
open set in R™ into a Banach space having k-th derivation (see [12]); we have

DFf(E) - (tr,...,te) = Y. Dy Dj,...Dj (@)1, - - ki

(J1:525-++53%)

where we sum over all n* possibilities.
Now we deduce that two curves «v,0 : R — Y satisfy v ~,. ¢ iff
A7 01)(0) _ iy 0 8)(0) 2
dtk B dt* '

for each k, 1 < k < r, and for all coordinate functions y?. In fact, v ~,. § implies
that y? oy — y? o § vanishes to order r, and so (2.2) holds. Conversely, we first
recall the higher order chain rule. We use the shorthand notation. For a
set of positive integers I = {iy,da,...,ix}, 1 < i1,42,...,ix < n, we denote by
Dy = D;, D;, ... D;, the partial derivative. Let UcCR"and V C R™ be open
sets, let f : V =R be a smooth function, and let § = (§7), 1 < o < m, be a
smooth mapping of U into V. Then we have

Dis o 'DiQDil (fog)(t)

= > Do, ...Do,Do, f(§(t)) D1, g% (t) ... D, g% (t) D1, 57 (1),
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where the second sum is understood to be extended to all partitions (1, Io, . . ., Ix)
of the set {i1,42,...,45}. This can be proved by induction (see [32]). Given a
function ¢ on Y, we find by the higher order chain rule that all partial deriva-
tives (and so all derivatives) up to order r of ¢ oy at zero depend only on
the partial derivatives up to order 7 of ¢ at (y? o ~4)(0) and on the derivatives
w, which occur in Equation (2.2). Hence qgo'y— <;~SO§ vanishes to order r
at 0 and Equation (2.2) really implies v ~,. 0.

If we suppose that the partial derivatives up to the order r of fP and gP
coincide at ¢(x), then the higher order chain rule implies f o ~, g o~ by the
previous paragraph. Thus we get J. f = J.g. Conversely, if we suppose that
Jof = JIg holds, then using the curves of the form ¢ o v(t) = at for arbitrary
a € R" we get from f o~ ~, go~ in the coordinates Z‘ilzk(Difp(O))ai =
Zli‘:k(Digp(O))ai (with 0 < k < r), where ¢ = (i1,...,i,) is an n-tuple of
non-negative integers, so called multiindex of range n, a* = (a')™ ... (a")

. . z lil
fora = (a',...,a") €R", |i| = i1+ +in, Dif = W

f from some open subset of R™ into R. Since a is arbitrary, we get that all the
partial derivatives up to order r of the components f? and ¢g? coincide at ¢(z).

&

We can define the composition Jygo Jif € Jy(X,Z). of rjets Jif €
Jo(X,Y), and Jyg € Jy (Y, Z), by Jygo Jyf = Jy(go f). We show that this is
well defined. If we suppose that JIf = J"f and Jig = J'g, f(z) =y = f(z),
then we can write for the other representatives J7(go f) = JZ(go f). In fact,
Jrf = JIf means that f oy ~, f o~ holds for every curve v : R— X with

~v(0) = z. From this we immediately get go foy ~,. go fo~, but Jig = Jlg

yields go fo~y ~,. go fo~, thus go fo~v ~, go f o~ holds for every curve
v : R— X with 7(0) = z. Therefore we really get J7(go f) = J7(go f) and the
composition of r-jets is well defined. An r-jet A € JZ(X,Y), is called regular,
if there exists an r-jet B € Jj (Y, X), such that Bo A = J;idy and A is called
invertible, if there exists an r-jet A~' € J; (Y, X), such that A~' 0 A = J7idx
and Ao A~ = Jridy. We denote by inv J"(X,Y) the set of invertible r-jets of X
into Y. It is not difficult to see (the proof is in [32]) that an r-jet X € J.(X,Y),
is regular if and only if each of its representatives is an immersion at the point x
and it is invertible if and only if each of its representatives is a local diffeo-
morphism at z. Let f : X — X be a local diffeomorphism, and g : Y —Y be a
smooth map. Then there exists an induced map J"(f,g) : J"(X,Y) — J"(X,Y)
defined by J"(f, 9)(A) = (J54y9) © Ao (J7 4y /)"

A triple (Y, 7, X), where 7 : Y — X is a surjective submersion, is called a
fibered manifold. Y is called the total space, X is called the base space,
7 is called the projection. Since 7 is a surjective submersion, it is transversal
over x € X, therefore m~!(z) is a submanifold of Y (see [36]), which is called the
fiber of Y over x and we sometimes write Y,, instead of 77 !(x). A morphism
of fibered manifolds (Y, 7, X) and (Y, 7, X) is a smooth map f : Y =Y
transforming each fiber of Y into a fiber of Y, i.e. there exists a map fp: X — X

for a function
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such that the following diagram is commutative:

vy Loy
X ——>x
fo

From the universal property of surjective submersion we get that fy is smooth.
We denote the category of all fibered manifolds and their morphisms by FM and
by I'Y the set of smooth sections of Y. We denote by B the base functor from
the category of fibered manifolds into the category of manifolds B : FM — M f,
which sends every fiber manifold (Y, 7, X) down to its base X and every fibered
manifold morphism f to fo. We denote by FM,, the subcategory of fibered man-
ifolds with n-dimensional bases and morphisms of fibered manifolds with local
diffeomorphisms as base maps. We denote by M f,, the subcategory of M f- the
category of manifolds and smooth mappings, where we consider n-dimensional
manifolds and local diffeomorphism.

Theorem 2.2. Let X and Y be smooth manifolds. There exists an induced
structure of smooth manifold on J"(X,Y) such that r-jet projections are smooth
surjective submersions, the composition of r-jets is smooth and J" is a functor

M x Mf —FM.

Proof: Let (U,p), ¢ = (z%) be a chart on X and let (V,v), ¥ = (y?) be a
chart on Y. We set W = (77%)~1(U x V) and put for each JIf € W

X(Jof) = @ oa,y? o Byl syl iy Uiy i ) (T )
ylpliQ...ik (J;:nf) = DilDiz s Dik (yp © f © @_1)(@(%‘))’

where 1l <k <r,1<p<m=dim(Y)and 1< <iy <---<i. <n=
dim(X). We show that x : W — ¢(U) x (V) x R is a bijection, where using
the combination with repetition we see that

ven(() () () ()

It follows immediately from Theorem 2.1 (see the remark at the beginning of
its proof) that x is injective. To show that it is surjective, choose a point
(zo = (x(),y0 = (W), PP P, ..., P, ;) € @U)xp(V) xRN and define
Py . =Pl i whenever (ji,j2,...,jk) is a permutation of (iy,ia,. .., k).

Now we can define a map f = (fp) : R" - R™ by

_ , . 1 . o .
PP a™) = g + PR — aff) P @ = o)~ of)..
+=P (27— a2 —x?) . (2 —ad).

pl " J1d2e e
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Putting f = ¢ Lo foop, & = = ¢ !(z0) we obtain a smooth map such that
x(J5 f) = (wo,90, P}, P}, ..., P}, ;). Therefore x is really a bijection. Us-
ing the higher order chain rule we see that the chart changings are smooth
maps, further we see that the canonical projections look locally like a projec-
tions and so they are surjective submersions, specially this defines the structure
of a smooth fibered manifold on 7™° : J"(X,Y)— X x Y. The chart (W, )
on the manifold J"(X,Y") is said to be associated with the charts (U, ¢) and
(V,4). Using the higher order chain rule again, we see that the coordinates of
a jet Jygo Jyf depend polynomially on the coordinates of the jets Jyjg, J; f,
therefore the composition of jets is smooth. Finally, since the composition of
jets is associative, we obtain a functor J" : Mf, x Mf— FM, which sends
a pair of manifolds (X,Y) to a fibered manifold 7" : J"(X,Y)— X x Y and
a pair of morphism (f,g) to an induced map J"(f,g), which is obviously a
F M-morphism over (f,g).

&

Example 2.1. If we define L, as the set of all invertible elements of Jj (R™, R™)
with an operation on it given by the composition of jets L x LT — LT (A, B) —
Ao B, then L] is a Lie group called the r-th differential group or the r-th
jet group in dimension n. We can introduce the canonical coordinates
on JJ(R™,R")y, and so on L! as previously by
aflig...ik (J6f> = DilDZé s lefp(0)7

where f = (fP) :R">R", 1 <k<r, 1<i <ip < - <i, <n. In these
coordinates we have L7, = {J{f € J§(R™,R™)q : deta?(J§ f) # 0}. Since the
mapping det oa? : J§(R™, R™)o — R is continuous, J§ f € L has a neighborhood
on which this function is nonzero. We can unify all such neighborhoods to
prove that L7 is open in J§(R™,R™)g. This defines the structure of a smooth
manifold on L]. Our operation is associative, the r-jet Jjidg~ is the unit,
every r-jet J§f € L" has an inverse J§ f| 1, where f| denotes a restriction of f
on some neighborhood on which f is a diffeomorphism. Thus L] is a group.
Theorem 2.2 implies that our operation is smooth, therefore L] is really a Lie
group. We remark that dim L7, = n (("/") — 1) and L}, can be identified with
the general linear group GL(n,R). Further the higher order chain rule (using
the same notation) implies that the group operation can be written in canonical
coordinates in the form

al i, o (JgaoJiB) = Z Sooab, s (Jre)al (JB)al (J5B) ... af (J5B).

k=1 (I1,I2,....Ix)

Example 2.2. Similarly as in Theorem 2.2 (see [32] or [25]) it can be proved
that Ty X = J§(RF, X) — X is a fiber bundle and T} : M f — FM is a functor,
which is on morphisms given by T} f(J§g) = J{(f o g). The elements of the
manifold 7 X are said to be the k-dimensional velocities of order r on X,
in short (k,r)-velocities.
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For every Lie group G with the multiplication u: G x G — G, T} G is also a
Lie group with the multiplication 17 11 : T} G x 1} G — T} G. We use the fact that
T{ preserves products, i.e. Ty Gx TG = T{ (G x G) with the identification given
by (J§f,J5g) — J5(f,g9). Tt is well defined, it is enough to use Theorem 2.1
and recall the following fact from differential calculus (see [12] or [36]): Let U
be open in the Banach space E and let f; : U — F; (i = 1,...,m) be continuous
maps into the Banach spaces F;. Let f = (f1,..., fm) be the map of U into the
product of the F;. Then f is of class C* iff each f; is of class C*, and in that
case D¥f = (D¥fy,...,D*f,,).

Analogously we define the space of all (k, r)-covelocities on X by T7*X =
JT(X,R¥)o. Tr* is a functor from M f,,, on morphisms given by T7* f(JIg) =

F) (gof~1) (where f~1 is constructed locally as in Example 2.1), into L” — bun-
dles (dim(X) = n). We show that a : T*X — X is really a L},-bundle. We
observe that R induce the structure of a vector space in each fiber a~!(z).
Let {(Ua, ©a)}tacr be an atlas on X. We can define the local trivializations
65 : a1 (Us) = Uy x J5 (R, R¥)g by ¢a(Jrf) = (a(JLf), J5(F 0 95" 0 ty,a):
where we use the translation on R™ given by ¢,(b) = b+ a for a,b € R™. For the
inverse map to ¢z we have (;Sgl(x, Jog) = Jr(got_y ) 0 ¢p). Thus we get

(z)a © (;5;;1(‘%’ JSQ) = (IE, Jg(g © t—apg(m) o pp o 90;1 o tapa(:c)))
= (x,Jigo Jg(t,wj(z) opgo (p&l o tgoa(:r)))'

We define the left action LT x J§(R" R¥)g— J5(R™, R¥)q by I(J5h,y) = yo
(J5h)~1. The left action as a composition of smooth maps is obviously smooth.
Further we set ¢ap(z) = J§(t—y, (2) © Pa © cpgl Oty,s(z)), these dop are smooth.

Hence we get l(dap(2), J§g) = pry oy o¢§1(gc, J5g) and {¢as}a, ser is a cocycle
of transition functions for the L -bundle o : T} * X — X.

Example 2.3. The set F"X of all r-jets with source 0 of the local diffeomor-
phism of R™ into X is called the frame bundle of order r of X. So an r-frame
at x € X is an invertible (n,r)-velocity at a point . We show that F"X is a
principal fiber bundle with structure group L],. The r-th differential group L]
acts smoothly on F" X on the right by jet composition, i.e. we have the right
action r : F"X x LT — F"X,(u,A) — uo A. Since u is an invertible jet, we
can act by u~! on the equation uo A = uo B with u € F"X and A,B € L",
then A = B and the right action is free. As in Example 2.1 we can prove
that F"X is open in T X, which defines a structure of fiber manifold (bun-
dle) on B : F"X — X. Further for every Ji¢, iy € 871 (x), z = B(u) in the
same fiber of 3 : F"X — X there is a unique element JJ (¢! o)) € LT satis-
fying (J§) o (J§ (¢~ 01))) = Jie, thus r is transitive on fibers, hence we get
B71(x) C orb(u). Since we have 3(u) = B(u o A), we obtain 3~1(x) D orb(u).
Thus 8~ !(z) = orb(u), i.e. the orbits of the right action are exactly the fibers
B~ Y(x) of F"X. Therefore we can apply the following Theorem (see [25]) to
prove that (F"X, 3, X, L") is really a principal bundle:

Theorem 2.3. Let p: P— X be a fibered manifold, and let G be a Lie group
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which acts freely on P from the right such that the orbits of the action are exactly
the fibers p~1(x) of P. Then (P,p, X, Q) is a principal fiber bundle.

Every local diffeomorphism f : X —Y induces amap F"f: F"X — F"Y by
FTf(Jj¢) = Jj(fo¢). We denote the category of principal G-bundles and their
homomorphisms by PB(G). Since for Jja € LI we have

Frf(Jgdo Jgo) = Ji(fopoa)=Jy(fod)oJyla)=F"f(J5¢)o Ji(a),
F" f is a smooth L’ -equivariant mapping and F" : M f,, — PB(L%) is a functor.

Example 2.4. Let 7 : Y — X be a fibered manifold, dim X = n, dimY = n+m.
The set J"Y of all r-jets of the local sections of Y will be called the r-jet
prolongation of Y. We see that an element v € J7(X,Y’) belongs to J"Y if
and only if (J5, 7)o v = Jyidx. If we use the associated chart (W, x) (as in
the proof of Theorem 2.2), then we see that for Jis € J'Y NW, 1 <4 <n and
1<j1 <jo <o <jr <n we have

y;(Jgs) = 5;, yﬁljz(Jgs) =0,..., y;iljzij(J;s) =0,

because the local section s satisfies 3° 0 s = 2. Therefore J'Y is a submanifold
of J'(X,Y). If there exist a fiber chart (V,4), ¢ = (2%, %?) on Y, then for
any multiindex j, 0 < [j| < 7 of range n ((7"°)~!(V), (z*,4})) is a fiber chart
on J"Y, where we denote by the same letter the restriction 770 : J'Y — JOY
of the canonical projection. For every section s of w : Y — X, the r-jet prolon-
gation J"s of s is a section of a : J"Y — X.

Let @ : Y — X be another fibered manifold and f : Y —Y be an FM-
morphism with the property that the base map fo : X — X is a local diffeo-
morphism. Then the induced map constructed before Theorem 2.2 J"(fo, f) :
JT(X,Yi)HJ’"(X,Y), ie. J"(fo, f)(JLs) = J]’Zo(x)(fosofo_l), transforms J"Y
into J"Y'. In fact, v = Jis € J"Y, is characterized by (Jj,7) ov = J7idx and
since F M-morphism f satisfies 7o f = fy o m, we get

(Thr (o) (amsnT) © I (o F)(T58) = (JfopT) © (Jhy ) 0 v o (Jh oy fo )
= (Jrop(o)fo) © (gm0 vo (Jf o fo ') = (T fo) o (J3idx) o (Jf, () fo )
= Jo(@idx;

thus we indeed have J"(fo, f)(Jy;s) € J"Y. We denote the restricted map by
J'f:J"Y — J"Y and it is called the r-jet prolongation of f and we denote the
corresponding functor by the same symbol J" : FM,, — F M as the bifunctor J"
before.

Example 2.5. We can consider all at once. Let (P,p,X,G) be a principal
bundle. For s > r we can define the principal prolongation of order (s,r)
of Lie group G as the semidirect product of Lie groups W,2:"G = Lj T G with
respect to the right action r : TG x L? — TG given by the composition of jets
r(Jya, J§a) = Jyaom®"(J§a). The multiplication in a semidirect product H x K
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of groups H and K with respect to a right action r of H on K is given by
(hl, kl)(hg, kz) = (hlhg, Thy (kl)kg)

We recall that in any category, the fiber product or pullback of two
morphisms f1 : Y1 — X and f5 : Yo — X over X consist of an object Y7 xx Y5
and two morphisms p; : Y7 Xx Yo—Y; and ps @ Y] xXx Yo — Y5 such that
fiop1 = faops, and satisfying the universal mapping property: Given an object
S and two morphisms g : S— X and g9 : S—Y such that f; o g1 = f3 0 go,
there exists a unique morphism g : S — Y7 X x Yo making the following diagram
commutative:

S g
2
O
\ \ Po
g\\ Yi xx Y > Y5
AN
N p1 fa
o,
Y ! X

We sometimes say that p; is the pullback of fo by f1 and also write it as f{ (f2)
and similarly we write Y7 x x Y2 as f7(Y2). So the pullback (Y7 xx Y3, p1,p2)
is not determined uniquely but only up to a ”unique isomorphism which makes
everything commute”. If f; : Y7 — X and f3 : Y5 — X are transversal morphisms
in the category of manifolds, then Y7 xx Yo = (f1 x f2) 1 (Ax)(= {(y1,92) €
Y1 x Yyt f(y1) = g(y2)}) (Ax is the diagonal of X x X) together with the
morphisms into Y7 and Y5 obtained from the projections, is a fiber product of
f1 and fo over X (see [36]).

Now (W*"P,X,p,W2"G) = (F°X xx J'P,X,p,L{ x T'G) is called the
gauge natural prolongation of order (s,r) of the principal bundle P
or (s,r)-th principal prolongation of the principal bundle P . Here the
projection p(Jie, Jio) = x is a surjective submersion. We have the free right
action of W2"G on W*" P given by (J§e, Jio) - (Jia, Jia) = (J§(eo a), Ji (o -
(aoa™toet))), where - on the right hand side denotes the right action of G
on P. Indeed, we can write the right action of WG on W*"P shortly in the
form (u,v) - (A,B) = (uo A,v- (Borm* (A"t ou™))), u € FX, v € J'P,
Ae L}, Be T G and now - on the right hand side is the induced map from
the right action p of G on P given by

J'Pxx J(X,G)—JP, (J o,J.s) — Jro-J.s=J.(po(o,s)). (2.3)

We see that (Jlo - Jrs) - Jit = Jlo - Ji(pwo(s,t)), where y is the multiplication
in G, we can write this equation shortly in the form (v-S)-T = v - (ST),
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v=JloeJP,S=Js,T=JlteJ(X,G). The computation

(u,v) - (4, B)(C, D)) = (u,v) - (Ao C,rc(B)D)
— (w0 Ao C,v- (re(B)D o™ (Ao C)~ ou))
= (woAoC,u-((Bom™"(C)D)or™ (C~ 0 A  ou™)))
— (o Ao C,u-(Bor™ (A ou (D ox™ (O~ o A ou™)))
— (o Ao C,(v- (Bor (A ou ™)) - (Dor™(C o (uo 4)71)))
= (oA, (Bor* (A ou™)) - (C,D) = (u,v) - (4, B)) - (C, D)

shows that the action of W"G on W#®"P is really the right action. If we
suppose that (u,v)- (4, B) = (u,v), i.e. (uoA,v-(Bor*" (A ou™1))) = (u,v),
then we get A = J3idg», because u € F*X is invertible. If we write v = J o,
B = Jjb, u = J§e, then our assumption implies

Jr(o-(boe ) = Jro. (2.4)

Let U be a neighborhood of the point 2 € X and ¢ : p~'(U)—U x G a
diffeomorphism such that ¥ (y - g) = ¥(y) - g for all y € p~}(U) and g € G,
and pr; o) = p. Such a diffeomorphism exists, because P is a principal bundle.
Then we have

U(o() - (boe ' (2))) = v(o(x)) - (boe ' (2)) = (z, p(pry ovo(o(x)),bo e (2)))

and so we obtain from (2.4) by applying J;(x) (pry otp) from the left and Jje on
the right

Jo(praoypoaoe) = Jy(uo (pryotpoooeb)) =T, u(Jg(pry o oo o), Jgb),

which is the multiplication in the group 7, G. Therefore B is the unit in T G
and the right action of W?"G on W*"P is in fact free. Moreover this right
action is transitive on fibers too. Indeed for (J3e, Jio), (J§E, Jio) € p~t(x)
there exists (J§a, Jja) € WG such that (J5€, JI6) = (J5e, Jro) - (J5a, Jia),
we simply take (J3a, J§a) = (J§(e to€), J§(1o(0,5)0€)), where 7 : Px P — G
is given by the implicit equation r(u,, 7(us,u,)) = ul,, where r is the principal
right action on P and u,,u/, € p~!(z). ! Now Theorem 2.3 implies that the
gauge natural prolongation (W*"P, X,p, W2"G) of order (s,r) of the principal
bundle P is a principal bundle too. We shortly denote WP = W™"P and
WG = W}"G for all r € N.

We shall give another description of W, G and W"P. We shall deal with the
category PB,,(G) consisting of principal bundles with n-dimensional bases and

1The mapping 7 is well defined since the right action is free. We immediately get
T(ug,uz) = e and from
r(ug - a, 7(ug - a,uy - a')) = uy - a’ = r(r(ue, T(ue, uy)), a’)
= (g, T(uz,ul)a’) = r(ug - a, a*l‘r(um7 ul)a’)
-1

we see that the mapping 7 satisfies the equation 7(ug - a,u}, - a’) = a™ 7 (ug,ul)a’.
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fixed structure group G, with PB,,(G)-morphisms which cover local diffeomor-
phisms between the base manifolds. So a PB,,(G)-morphism 4 from (P, p, X, G)
into (P’,p', X’,G) is a smooth fibered map over a local diffeomorphism g :
X — X' satistying ¢ o p, = p,, 01 for all a € G, where p and p’ are the principal
right actions on P and P’.

All PB,,(G)-morphisms are local isomorphisms. Indeed, using some local
trivializations ¢, and ¢/, on P and P’ respectively we have

1/1&/ 07%101/);1(35,@) = ((7/1&/ 07%101/);1)0(30), (pI‘2 Oq/}/o/ 01/101/);1(x,6))a),

but (1!, 01 o ¢ 1) must be a local diffeomorphism and the left translation
through pr, 0, 0vpotp ! (x, €) is a diffeomorphism, thus a PB,,(G)-morphism v
is a local diffeomorphism. Locally for each v’ € P’ there exists one u € P such
that ¥ (u) = u’, hence we have

oW a) =T () ) =T (W (ua) =uca =97 ($(u) a
=y~ (u) a

for each u/ in some open set in P’ and for all @ € G. Since 1)~ is fiber respecting
too, a PB,,(G)-morphism ¢ is really a local isomorphism.

We have a bijection between the set of PB,,(G)-morphisms from R™ x G
into P and the set of pairs, which are formed by local diffeomorphisms and local
sections of P. To a PB,,(G)-morphism 1 : R™ xG — P we associate a local diffeo-
morphism v and a local section 1 of P by the relation ¢ (x, a) = (1101 (x))-a,
ie. ¥i(x') = (gt (a'),e) and from p oy (z') = po (g (x'),e) = 1o o
pry (g H(2),e) = ' we see that ¢, is in fact a local section of P. Anal-
ogously, every PB,(G)-automorphism ¢ : R" x G—R" x G is fully deter-
mined by its restriction ¢ : R* =G, ¢1(x) = pryop(z,e) and the underly-
ing map ¢p : R” = R", i.e. we have ¢(z,a) = (¢o(x), (¢1(x))a) (compare with
Equation (3.15)). Now we can consider the group of r-jets at (0, e) of all auto-
morphisms ¢ : R" x G —R"™ x G with ¢o(0) = 0, where the multiplication p is
defined by the composition of jets, i.e. ,u(J(rO,e)(b, J{O’e)@b) = J(’"07e)(¢ o). This
definition is correct. In fact, we have

J(To,qsl(o))Pa © J(ro,e)ff) = J(To,e) (Pao @) = J(ro,e)((b ©pa) = J(To,a)¢ ° J(To,e)ﬂa (2.5)

for all a € G, where p now denotes the right action on R™ x G. But p, is a
diffeomorphism, thus we get J(To,e)qb = J(To’e)qb iff J(To’a)(b = J(To’a)qb. Hence for

Tio.ey® = Jio,0y® and Jfy b = Jf 4 the computation
M(Jfo,e)ﬁb» J(TO,e)w) = J(TO,e)(Q5 01h) = J(Toﬂz,l(o))ﬁb © J(ro,eﬂ[} = J(To,yjl(o))ﬁb © J(To,e)@[}
= M(‘](O,e)(b’ J{O,e)w)

shows that the map p is well defined, further the composition of jets is smooth,
the unit is J(TO e)ianXg and the inverse elements are the jets of inverse maps,
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which always exist locally. Therefore the multiplication p is indeed correctly
defined. For every ¢,¢ € Homppg, (c)(R" x G,R™ x G) we have

po(x,a) = d(Po(x), (Yr(x))a) = (o © Yo(x), ¢1(Po(x)) (Y1 (x))a).

If we write (4, B) = (J§¢o, Ji¢p1) € WG for the element corresponding to
jet Jiy ¢ and (C, D) = (Jgebo, Ji1) € Wy G for the element corresponding to
jet JZ"O@Q/), then in this identification we get

/L((A’B)a (CaD)) = (A oC, (B o C)D)v

where on the right hand side in the second input we use the multiplication
in T G. If we compare this multiplication p with the one on W, G defined pre-
viously, then we see that there is an isomorphism between the group considered
now and the principal prolongation W, G of Lie group G.

We can define the set {J{07€)1/1 € J'(R"xG, P) : Y € Hompg, ()(R"xG, P)}
and we denote it by the same symbol as the gauge natural prolongation W P.
There is a bijection between R™ x WG and W"(R" x G)

R" x WG 3 (z,J{509) = J(o,e)(Tz 0 9) € W(R" X G),

where we use the translation ¢, to define 7, = t, x idg , with the inverse map

given by J(’“O!e)(i — (pry 09(0, e), J{O’e)(rp*ri 0d(0.0) 0¢)). Thus there is a structure
of smooth manifold on W"(R" x G). If we define the functor W” on PB,(G)-
morphisms as the composition of jets by Wrx(J(TO_’e)w) = J(To,e)(X o), then
we can transform any principal bundle atlas on P to an atlas on W”P. The
right action of W,;G on W"P is given again by jet composition, i.e. J{O’e)w .
J(”"[)’e)(é = J(TO,E) (1 o @), which is free and transitive on fibers (all jets are in-
vertible), therefore (W"P,p o 5, X, W'G) is a principal bundle. If we write
(u,v) = (Jvo, JJLO(O)wl) € W"P for the element corresponding to jet J{O,e)w
and (A, B) = (Ji¢o, J§é1) € WG for the element corresponding to jet J{0,0)9:
then from the computation

Yo ¢(z,a) =(do(x), 1(x)a) = (1 0o 0 go(z)) - (¢1(z)a)
= (po(Yr1,010¢5" oy ") o (Yoo do)(z)) a

(in such an identification) we get (u,v) - (A,B) = (uo A,v - (Bo A~ ou™1)),
where - on the right hand side is as in (2.3). This corresponds to the right action
of WG on W"P defined previously 2.

Finally we prove that P — W*"P for P € Ob(PB,(G)), ¢ — W") =
(F*1po, JTp) for o € Hompp, (@) (P, P') is a functor PB,(G) — PB,(W;;"G).

2A similar construction using the concept (r, s,q)-jet can be done also for W*"P. We say
that two maps f,g € Homz(Y,Y’) determine the same (r, s, q)-jet at y € Y, s,q > r, if

J;f = J;g and J;f\ym = J§g|ym and JIBf = JIBg,

where Y is the fiber, which contains y. Then W*'" P can be identified with the space of all
(7,7, 5)-jets at (0,e) of a homomorphism f € Hompg, (@) (R™ x G, P).
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The functoriality follows from W*" = xpg(yo (F*o B,J"). It remains to prove
that W=7y € Homppg, (wzrq) (WP, W*"P"). The computation for u = Jje €
FeX,v=Jc€ J P,A=JSac L, B=JbeT:G

WeTh((u,v) - (A, B)) = W h(uo A,v- (Bor® (A~ ou™1)))
= (F*to(uo A), J"p(v- (Bor™" (A"  ou™))))
= (J5(oocoa), Jy @ (Wo(o-(boa™ o)) ory "))
= (J3(Wooeoa), Jj o) ((Wooodg')  (boa™ oe  oyyt)))
= (Fo(u) 0 A, J"(v) - (Bom™ (A" o (F*tho(u) 1))
= (F*o(u), J"9(v)) - (A, B) = W*"(u, v) - (A, B)
shows that W is indeed a PB,,(W:"G)- morphism.

For every bundle P x; Z associated to a principal bundle (P, p, X, G) there
is a canonical left action " : W) G x T, Z — T Z given by

(S0, Jo5) = Jg (Lo (¢10 65" 50651)), (2.6)

i.e. as the composition of the prolonged action 7! : T))G x T, Z — T Z, which
is defined analogously as the multiplication in Example 2.2, and the canoni-
cal left action of L] on both TG and T, Z. We denote by x;Z the functor,
which associates to any principal fiber bundle homomorphism ® : P— P’ a
homomorphism [®,idz] =P x; Z: P x; Z— P’ x; Z, [y, z] — [®(y), 2].

Theorem 2.4. There is an isomorphism J"(P x; Z) =2 W'P x;» TrZ. In
this identification the correspondence P +— J"(P x; Z), ® — J"([®,idz]) =
[FToB(®)xJ"(®),idrrz] is a functor from PB,(G) to the subcategory of F M,
which is formed by bundles associated to an r-th principal prolongation of a
principal G-bundle and their homomorphisms.

Proof: See [25], [34], [32].
¢
The functor from Theorem 2.4 is one example of the following concept.

A gauge natural bundle functor or G-natural bundle functor over n-
dimensional manifolds is a functor F : PB,,(G) — FM such that:

1. every principal bundle p : P — BP from Ob(PB,(G)) is transformed into
a fibered manifold gp : FP — BP,

2. every principal fiber bundle homomorphism f € Hompg, (P, P’) is
transformed into a morphism of fibered manifolds F'f : FP — FP’ over
Bf,

3. for every open subset U € BP, the inclusion i : p~1(U) — P is transformed
into the inclusion Fi : ¢p' (U) — FP.
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If F is a gauge natural bundle functor and (P,p, X,G) € Ob(PB,(G)), then
qp : FP— X will be called a gauge natural bundle.

Example 2.6. A natural bundle functor over n-dimensional manifolds is a
functor F' : M f,, — F M such that:

1. Bo F = Iduyy,, ie. the projections form a natural transformation p :
F —Idpy,,

2. if i : U— X is an inclusion of an open submanifold, then FU = p}l(U)
and Fi : py'(U) — FX is the inclusion.

From a natural bundle functor F we simply obtain a gauge natural bundle
functor F' by F' = F o B. Conversely, the choice G = {e} makes from a gauge
natural bundle functor a natural bundle functor.

Example 2.7. The functor (x;5) o W" : PB,(G) — FM is a gauge natural
bundle functor.

An argument analogous to the one in Example 2.5 using (2.5) shows that
Jy f = Jyg for f,g € Hompp, (g)(P, P') and y € P, z € BP implies J f = J]g
for all z € P, in the fiber P, over x. In this case we write J,f = J7¢ and say
that f and g have the same fiber r-jet at z. A gauge natural bundle functor is
said to be of order r, if J7 f = JI g implies F f|r, p = Fg|r, p, where we denote
by F,P = (FP), the fiber over z. A gauge natural bundle functor is said to be
regular, if every smoothly parametrized family of PB,,(G)-morphisms

f: X —Hompp, () (P, P')

parametrized by a manifold X (i.e. the map X x P— P’ (t,u) — f(t)(u) is
smooth) is transformed into a smoothly parametrized family of fibered manifold

morphisms R

Ff: X —Homgpm(FP,FP")
(i.e. the map X x FP— FP’  (t,v) — F(f(t))(v) is smooth).
Theorem 2.5. For every r-th order regular gauge natural bundle functor F :
PB.(G) — FM there is a canonical structure of an associated bundle W™ P xS
on FP given by a map bp and the values of the functor F' in this identification

lie in the category of associated bundles and their homomorphisms, i.e. we have
the natural equivalence b : [W7,ids]| — F and the following diagram commutes:

WrPx; S~ Fpp

[W"'ﬁids}l lFf

bpr
WrP' x; 8 —— FP’
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Proof: First we define the associated maps Fpp/ : invJ" (P, P') Xpgp
FP— FP’ of the gauge natural bundle functor F' by Fp p/(J. f,y) = Ff(y).
This is well defined. Indeed, J] f = J g with z € P, implies J,f = J_¢. Since
F is of order r, we have

Fppi(J.g,y) = Fgly) = Fglr,pr(y) = Fflrpy) = Ff(y) = Frr(J]fy)

and the associated maps of the gauge natural bundle functor F' are really
well defined. To prove that these associated maps are smooth, it is suffi-
cient to restrict ourselves to P = P’ = R"*™. We consider the map ev :
inv J7 (R R7EmY) 5 R SR ™ given by ev(J! f,u) = f(u), where f is
the canonical polynomial (as in the proof of Theorem 2.2), which corresponds
to J7 f. We see that the map ev is well defined and smooth and by regularity
of F' we get that Fev is smooth too. The computation

(Fev)|iny gr@ntm grtmyxgnrntm (J2f,y) = Flevyrp)(y) = F(f)(y)
= Fme,me(J;f, Y) = Frn+m gotm (JL f,y)

shows that Fgn+m gntm is smooth, thus the associated maps are smooth.

Now we can define the smooth induced action of the r-th principal pro-
longation WG of a Lie group G on the standard fiber S = Fy(R™ x G) by I =
F]R"XG,]R"XG|W;{GXS- The map bp : W"P x; S — FP given by the factorization
of Frnxa plwrpxs through the surjective submersion ¢ : WP xS —W7"P x; S
is well defined. In fact, we have

bP(‘](TO,e)d) ’ ‘](TO,e)¢7 l(‘](ro,e)djilv s)) = bP(‘](TO,e) (Y og), Fqsil(s))
=F(od) o Fo~'(s) = Fii(s) = br(Jig o)1, 5)-

for all JZ‘O’S)’(/J e W"P, J&)’e)q’) € WG and s € S. From bpog = Frnxg,plwrpxs
we obtain by universal property of surjective submersion that bp is smooth.
The map FP,R"XG|W’“P><F%(O)P(U717 ) : Fwo(O)PHS for u = J{O,e)¢ is the
inverse map to Frnxa,plwrpxs(u, ) : S — Fy P and we denote this diffeo-
morphism from a fiber of F'P to the standard fiber S by ¢,. Then the map
bl : FP—W'P x; S, bp'(y) = [u,cu(y)] with u € WP is the inverse
map to bp. Locally for some section s, of pp : W"P — BP we can write
bpL () = 50 © 4 (9): Conoqny) (1)), because from pp o 5, 0 gp(y) = gr(y) we see
that s, ogqp(y) € qup(y)P, therefore b;l is smooth and bp is a diffeomorphism.
This bp is the isomorphism W"™P x; S = FP.
Finally the calculation

Ffobp([Jipe)ssl) = Ff o Fip(s) = F(f o 9)(s) = b ([J(g,e) (f © ), 8])
= bp (W f(J(o,0)¥), ) = bpr o W' f,ids([J{g ey 5])

finishes the proof.
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It can be proved that every gauge natural bundle functor is regular (see [25]),
thus Theorem 2.5 says that every r-th order gauge natural bundle is of the form
as in Example 2.7. Quite similarly, using the concept of (r, s, q)-jets, it can be
proved that every gauge natural bundle functor of order (s, r) 2 is a fiber bundle
associated to W*". We will call a fiber bundle associated to W* " P the gauge
natural bundle too.

Example 2.8. It is possible to introduce connections in several equivalent ways.
We will describe connections as sections of the first jet prolongation. We show
that the bundle of principal connections is a gauge natural bundle.

Consider the principal action r : P x G— P on (P,p, X,G). Then we have
the canonical right action 7 : J'P x G— J'P,#(Jls,g) = Ji(rg os). Then
a principal connection I' on P can be considered as a G-equivariant section
I': P— J'P of the first jet prolongation 3 : J'P — P. In fact, from 4

T;(I’(fu) = (Turg)_l(Turg by —T(u-g)oTy(pory)-&u),
P(&u) = (Turg)_l(Turg &y —Tgo L(u) o Tup - &u)

for g € G and u € P we see that the connection ® considered as a vector valued
one form is principal (r;® = ® holds for all g € G) iff T' is a G-equivariant
section of the first jet prolongation 3 : J'P — P. The bundle of principal
connections is defined as QP = J'P/G. Now we show that the sections of
QP are in bijection with the principal connections on P. The following two
theorems can be found in [25].

Theorem 2.6. The functor Q : PB, — FM, associates with each principal
fiber bundle (P,p, X,G) the fiber bundle QP over the base X with the standard
fiber J3(R™, G)..The smooth sections of QP are in bijection with the principal
connections on P.

Proof: From the definition of 7 we see that the source projection o : J1P — X
factors trough ¢ : J'P— J'P/G to & : J'P/G — X so that « = @ ogq. For

a homomorphism of principal bundles (¢, ) : (P, p, X, G) —(P,p, X,G) over a
homomorphism ¢ : G — G the relation

T §(Fg(T38)) = J§ () Py © B0 5005 ")

holds for all J!s € J'P and g € G. Hence the map Q¢ : QP — QP,[J}s] —
[J1(JLls)] is well defined. If we define a suitable smooth structure on QP

3As before Jy"ff = Jy"%g at a point y € Py for f,g € Homppg, (a) (P, P’) implies
that Jy"°f = J;""%g holds for all y € P, and we write J;"°f = Jz"%g. We say that
a gauge natural bundle functor F is of order (s,r), s > r, if Jy"%f = J"°g implies
Fflp,p = Fglr,p.

4For a vector bundle (Y, 7, X) we denote the space of Y-valued k-forms by QF(X;Y) =
I(AFT*X ® Y). If f : X — X is a local diffeomorphism, we can consider the pullback f* :
QF(X;TX)— QF(X;TX), given by

(F*Na(€rs ) = (T f) ™ Ny Taf &1, Tuf - Eg).
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than we have proved the first part of the theorem. Let us first assume P =
R"™ x . We have the identification J}(R" x G) = R" x JY(R",G), Jls s
(@, JE(pryosot,)). If we use a canonical representative in each orbit [J1s] with
s(x) = (x,e), e € G being the unit, then we get the induced smooth structure
QR" x G) 2 R" x JHR",G)e 2 R" x R", dimG = m. Now we see that
q becomes a surjective submersion. From the universal property of surjective
submersions we see that & is smooth. From the fact that the composition of
jets is smooth and using universal property of ¢ again we see that Q¢ is smooth
for every PB,,-morphism ¢ : R” x G — R"™ x G. For every principal fiber bundle
atlas (Uy, o) on (P, p, X, @) the charts (Uy, Qo) form a fiber bundle atlas
on (QP,a, X, J3(R",G).). The functoriality of Q follows from the functoriality
of JL.

Now we prove the second part of the theorem. To each principal connection
I' on P we associate a section S = qoI' o s of QP, where s is an arbitrary
section of P. As a composition of smooth mappings S is smooth. Conversely,
to each section S of QP we associate a principal connection I on P defined by
I'(u) =7g0i0Sop(u) for each u € P, where ¢ is a map such that goi =idgp
and g € G is given by the condition u = 75000 S op(u). Since we can
write I' = 7 (goioSop(),idp()) © ¢ © S © p, where 7 was defined on p. 11, and the
surjective submersion ¢ admits smooth sections, i.e. we can take a smooth 7 at
least locally, T" is smooth too. These associations are inverse to each other.

&

Now we show that the bundle of principal connections is a gauge natural
bundle of order 1. This is the special case of Theorem 2.5.

Theorem 2.7. QP 2 WP x;, S, where S = (Q(R"™ x G))o and the action Iy
is given by Iy : WG x S— 8, 1a(Jf 10, Y) = Qo(Y).

Proof: From J(lo’e)qS = J(lo’e)q[; we see that Ji¢g' = Jidy' so Qp(Y) =
[T ¢(J3s)] = [J3(dosody )] = [J oy PoJgsoJidy ] = [ oyboJiso Jidy ) =
Qo(Y), where we take Y = J3 s with s(0) = (0, ¢), so I3 is well defined. Because
the composition of jets is smooth we see that [ is smooth too. We see that
q: WP x S—QP, q(J(107e)w,Y) = Qy(Y) is well defined, moreover we can
factorize ¢ to smooth ¢ : WP x;, S — QP. In fact, this is well defined, because
we have (j([J(lo’e)w . J(lo’e)d), J(107e)¢_1 Yi,) = Q(J(lo,e)(iﬁ 0¢),Qp~H(Y)) = Qo
Qb o Q1Y) = Qu(Y) = 4([J)y ¥ Y]i,) and it is smooth because of the
universal property of surjective submersions. Further ¢ is a bijection with the
inverse ¢~ 1(Y) = [J(loﬁe)w,Qw_l(Y)]l2 for Y in a fiber chart (U, Q). From
Go = idx and because ¢ looks in canonical local trivializations like the identity
we see that ¢ is an isomorphism.

&

If we have more interactions and more matter particle species each corre-
sponding to some gauge natural bundle, then it is good to know that their fiber
product is a gauge natural bundle too, and what it looks like.
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Theorem 2.8. (WS1>T1P X1, Sl) X x (WSz’Tz_P X1y 52) = WSTP x; (Sl X Sg)
where r = max{ry,ra}, s = max{sy, s2} andl is induced by l; and ls.

Proof: We define a map

b: (WP %, S1) xx (W72 P x;, So) = W*"P x; (51 X S2),
([(Jo er, Izt o1), filins [(Jo2 €2, J3202), fali,) =
[(J§€uis)s Jooumy)s (91 192 10 F2)li

where 1(s) =i for s = s; (i = 1,2) and similarly for r, the g;’s are given by the
condition: there exists a unique g; € W;7»" G such that

LA 7TT’”(J(‘JQEL(‘S‘% ‘].’:O—L(T')) = (Jgiﬁz‘, Jyioi) - gi
and the left action [ is defined by formula

g (fi, f2) = (7' (9) 1, f1.72(9) 1, f2),

where 7 are the homomorphisms 7 : W"G — W2"G given by the canonical
projections, and since I; are left actions, [ is a left action too.
Now we prove that b is well defined. For another pair of representatives we
get
(((Jg*er, J5ton) - by hyt oy filus [(Jg% €2, T2 02) - hayhy oty foliy) =
[(J§eusy: Taouy) 1 (g1 ot by o f1,82 o byt )l

for some h € W;"G and from

(Jyiei, Jpioi) - gi - mth = 5% x 7" (Jg€uts)s Ja0u(ry) -7mth
=105 1" (g ey, Juouwy) - h) = (Jgtei, Jyioi) - hi- G

Wegetgi:hjl-gi-wihso

[(J5eus)s Jeoum) - ho (g1 " by o f1,82 " 10 by f2)li
= [(J5€u(s), J30uimy) - h (BT e gi e PRy g0t fo)li
= [(J5€us) Jooumy) - BB 1 (g oy f1,95 1 1 f2)li
= [(J5eusy: Jaoum)s (91" 0 f1.92 " 10 f2)l-
So b is in fact well defined.
Now we prove that b is a bijection. We define a map
b_l WP X1 (Sl X SQ) —>(WSI’TIP X1y Sl) X x (W32’7‘2P Xy SQ),

[(J5e, Jpo), (f1, f2)li
([7°r x ™™ (JSe, Jro), fili, [75°%2 x a2 (JSe, J o), faliy)-
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b~ is well defined because

[(J5e, Jzo) - b, b=t (fis fo)li =
([r%5 x 7" (J5e, Jho) - mh, (7 h) ", filn,
[7552 x 1772 (JSe, Jho) - w2h, (12h) "1 4, faliy)
=[x >xx™ (e, Jpo), fuliy, [0 x w2 (Jge, Jpo), fali,)-
Immediately we see that b= o b =id and bob~! =id.
Finally we must prove that b is a bundle isomorphism. So b must be a

diffeomorphism and its projection on the base by must be a diffeomorphism and
the following diagram must be commutative:

(Wsl,rlp X1, Sl) X x (WSQ,T2P X1, 52) 4b> WsTP x, (Sl % S2)

Pmi \Lp
bo

X X

From the definition of b we see that the diagram is commutative and by =
idx, so by is a diffeomorphism. We recall local trivializations, which we need.
Let ¢! : Uy x WSTG —p~1(U,) be given by ¢ (z,a) = so() - a (similarly
for W*"i P with the corresponding indices 7). Let 951 : Uy x S — p~1(Uy,) be
given by ¥, 1(x, f) = [¢p5 1 (z,e), f];, where we denote S = Sy x Sy (similarly
for W#i"i P x,. S; with the corresponding indices i). Let for the fiber product
Ui : Ua X S =iy (Ua) be given by v, (2, f1, fa) = (414 (@, 1), a0 (2, f2))-
If we consider the sections related by s;, = 7%%* X7 " 05,4, then the computation

Yaobo '(/Jl_Qla(xvfhf?) =1q © b([sla(x)’fl]lu [SQa(x),fQ]lz)
:wa([sa($)7f17f2]l) = (96, f17f2)

shows that b locally looks like idy, « g, so b is a local diffeomorphism, thus b is
a diffeomorphism, because we have proved that b is a bijection.

&

2.2 Gauge Natural Operators

Let F and F be two gauge natural bundle functors over n-dimensional manifolds.
A gauge natural operator D : F'— FE is a system of regular operators Dp :
I'FP—TEP for all PB,,(G)-objects p : P— BP such that

1. Dp(FfosoBf ™) = EfoDpsoBf~! for every section s € IFP and
every PB,,(G)-isomorphism f: P— P,

2. Dy (s|U) = (Dps)|U for every section s € I'F'P and every open subset
UcCBP
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Here regular means that every smoothly parametrized family of sections is trans-
formed into a smoothly parametrized family of sections. If, moreover, for a
certain k € NU oo we find that for every x € M, for every P and s,q € 'F'P
the implication J¥s = J¥q¢ = Dps(r) = Dpg(z) holds, then we say that D is
of order k.

We present the following two theorems which can be found in [25], the proofs
are analogous to the proofs for natural bundles in [34].

Theorem 2.9. The k-th order gauge natural operators F'— E are in canonical
bijection with the natural transformations J*F — E.

Proof: For every k-th order gauge natural operator D : F'— E we define the
natural transformation D : J*F — E by Dp : J*FP — EP,Dp(JFs) = Dps(z).
By definition of the k-th order gauge natural operator we see that each Dp is
well defined and smooth. We must prove that the following diagram:

JEp —2> EP (2.7)

J"Ffi lEf
D

JFFP — > EP

commutes for all PB,,(G)-morphism f : P— P. In fact Dp o JFFf(JEs) =
Dp(FfosoBF - )(BFf(x)) = EfoDpsoBf~'(Bf(x)) = EfoDps(x) = Bfo
Dp(Jks). (Every PB,(G)-morphism is a local isomorphism and Dp depends
only on germ,s, so we can append restrictions, if necessary.)

Conversely, for every natural transformation D : J*F — E we define the
k-th order gauge natural operator by Dps(x) = Dp(JEs). Because every Dp
is a base preserving F M-morphism (Lemma 2.10) we see that Dp o J¥s is a
section, evidently smooth. From Dp(FfosoBf 1) (Bf(z)) = 'Dp(Jgf(I) (Ffo
soBf 1)) =DpoJ*Ff(Jks) = Ef oDp(JFs) = Ef o Dps(x) we get the first
condition on the gauge natural operator, the second can be seen at once. The
order is clear from definition.

&

We denote the standard fibers of FP and EP by Fy = Fy(R™ x G) and Ey =
Ey(R™ x G). To each W G-equivariant map f : Fy — Fy we can associate the
F M-morphism fp which is given by fp([¢,u]) = [(, f(u)].

Lemma 2.10. Let ® : FP— EP be a F M-morphism, then Ego ® = ® o Fg
holds for each PB,(G)-morphism g : P— P iff there exists a unique W G-
equivariant map f : Fo — Eg such that fp = ®.

Proof: Denote by pp (resp. prp, resp. prp) the projection of the bundle
WTP (resp. FP, resp. EP). From pgpo Ego® = pgp o ®o Fg we get
goo®Pgoprp = ®yoggoprp S0 gy o Py = Pg o gg for all PB,,(G)-morphism
g: P—P and so &9 = idx. We define a map ®, : Fy — Ep by the relation
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®([¢,u]) = [¢, P (u)] for any x € X and ¢ € pp'(x). ¢ is independent of ¢ over
x. In fact, W"g(¢) = (- a for ¢ = S0, a=Jj ¢ and g =t ogo P
o (W7 g(C), ¥ ()] = Eg o (G, u]) = ® 0 Fg((c,u)) = [W7g(C), Doy (u)] =
[W’”g(() .. a( )], which implies &, = ®..,,. By transitivity of the action of
WG on W"P we get the independence of ®¢ from the choice of ¢ in the fiber
over x. Moreover, ®. is independent of z. Choose a PB,(G)-morphism g
sending (; over x1 to (y over xo then [W7g((1), @c, (u)] = Ego ®([¢r,u]) =
® o Fg([Ci,u]) = W"g((1), Pe, ()], which implies ®¢, (u) = P¢,(u). Now we
put f = de. From (¢, f(u)] = [¢, b ()] = B((C,u)) = B(IC - a Lya-u]) = [C-
a”l, ®c(au)] = [¢, a7t fa-w)] for all a € WG we see that f(a-u) = a- f(u) and
so we get the W, G-equivariant map f : Fy — Ey such that [(, f(u)] = ®([¢, u]).
The uniqueness and the converse implication are obvious.

&

Theorem 2.11. Natural transformations F — E between two r-th order gauge
natural bundle functors over n-dimensional manifolds are in canonical bijection
with the W) G-equivariant maps Fy — Eq between the standard fibers.

Proof: To each W, G-equivariant map f : Fy— Ey we can associate the
natural transformation D¢ : F'— E defined by Df : P — fp for each bundle
P € Ob(PB,(G)). From the equation fp o Fg([¢,u]) = fp([W"g((),u]) =
W7g(C), fw)] = Eg([C, f(w)]) = Ego fp(C,u]) for all PB,(G)-morphisms g :
P — P we see that Dy is really a natural transformation.

Now we shall show that the correspondence f — Dy is bijective. Dy, = Dy,
implies fip = fap for all P € Ob(PB,(G)), by Lemma 2.10 we get f; = fo
and so the correspondence is injective. For an arbitrary natural transformation
D : F— FE and for fixed P there must exist by Lemma 2.10 a unique W, G-
equivariant map f : Fy — Ey such that fp = Dp. This f is independent of P.
In fact, suppose that fp, = Dp, and fp, = Dp, for some Py, P> € Ob(PB,(G)),
then fp, o Fg = Ego fp, for any PB,,(G)-morphism g : P; — P,, which implies
W7g(Q), Fw)] = fr, o Fg([Cou) = Bgo fp, (G, ul) = Wg(C), f(w)] and so

f = f, thus the correspondence is surjective.

&



Chapter 3

Variational Theory on
Fibered Manifolds

Our main goal in this chapter is to discuss properties and under-
lying geometric structures needed in the general variational theory.
We focus our attention on the concepts which are necessary in the
Einstein-Yang-Mills theory. We prefer the notion of differential forms
for a Lagrangian defining a global variational functional. A global
characterization of extremals in terms of partial differential equations
is achieved with the help of the so called Lepage forms, allowing us to
express the variational derivatives in a coordinate-independent form.
We define a gauge natural structure of a gauge natural field theories.
We also discuss Noether’s theorem and the first variation formula for
the so called induced variations for a gauge natural Lagrangian.

3.1 The Lagrangian and the Action Function

Let 7 : Y — X be a fibered manifold with dimY = n + m over a n-dimensional
orientable base manifold X. If W C Y is an open set, we denote by QW the
ring of functions on W” = (7"%)~!(W); we denote by Q7 W the QfW-module of
differential p-forms on W" and the exterior algebra of forms on W is denoted
by Q"W. A differential p-form p on Y is said to be m-horizontal (or simply
horizontal), if for each point y € Y the contraction i¢p(y) vanishes whenever
¢ is a vertical vector. The module of 77-%-horizontal (resp. 7"-horizontal, where
7" = a is the source projection) p-forms on W" is denoted by € 3 W (resp.
Q) xW).

23
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A Lagrangian of order r for a fibered manifold Y is a n"-horizontal n-
form A on the open set W of the r-jet prolongation J"Y of Y, i.e. A € Q) «W.
In a fiber chart (V,%), ¥ = (2%,9°) on Y a Lagrangian of order r defined on
V7" can be expressed as A\ = Lwg, where wy = dz* Adz? A--- Adx™ and L :
V" — R is the so called Lagrange function associated with (V). From this
coordinate representation we see that a Lagrangian of order r can be considered
as a morphism ) of fibered manifolds:

JY —2 s AnTrX

17

X

But we shall prefer the notion of horizontal n-forms.

Let Q C w(W) be a compact, n-dimensional submanifold of X with bound-
ary. We denote by I'qg w (Y) the set of smooth sections of ¥ from Q into W.
For a Lagrangian A € Q) W we define the so called action function (or the
variational function) \g : Tow(Y) —R by Aq(v) = [, J™v*A. If € is a pro-
jectable vector field on an open set W, i.e. if there exists a vector field &, on
(W) such that £ and & are m-related (T'm o & = &y o ), then we have for their
flows 7 o Flf = FI¥° o 7. We define the variation (or the deformation) of the
section v € T'q w (YY) induced by the vector field £ by v, = Flf oo (Flf”)_l.
From the computation on the domain of ~;

Toy=moFLoyo (FI5°) ' =FI oo yo (FI5°)~!
= FI° o (FI5°)~! = id
we see that the variation is a 1-parameter family of sections of Y. We say that

a section v € Tqw(Y) is a stable point of the variational function Aq with
respect to its variation induced by the vector field &, if

(;AFlf‘J(m ("Yt)>0 =0. (3.1)

For a projectable vector field £ on Y we can define a vector field J"¢ on J"Y
- the so called r-jet prolongation of & by J"¢(JLy) = %|0 J7(F15)(Jzy) for
each J.~v belonging to the domain of J" (Flf) Then using the Lie derivative 0,
Equation (3.1) is equivalent to

(OgreN)al(y) = 0. (3.2)
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In fact, this follows from the computation

d d
—\ 5 > = 7/ J"(FL oo (FIE°)~1))* A
<d Flfo(Q)( t) . (dt FlfO(Q)( (F1; (F1;*)™))
d rmé T oy —1\\*
=\ F150(Q)(J Fl; o J"y o (FI3°)75))* A
t

= i/ (Flfo)_l* oJ"y* o (JTFlf)*/\
@t Jeiso @) i

d d
B el % TFIE* — rox [ 9 rF1§ *
(G [ owrmira) = [ (Gomei)

P
:/ Jy* ((Fl{ ’5)*A> :/ Ty 0yred = (O5reN) (7).
Q dt 0 Q

0

0

We call the variational function (0r¢)q @ Tow (Y) —R (associated with the
Lagrangian Jj-¢A) the variational derivative or the first variation of the
variational function Aq by the vector field €.

Let p be a differential k-form on J"Y. Then there exists one and only one
n"-horizontal k-form hp on J"'Y such that

Iy p=J" " hp (3.3)

for all sections v of Y. To prove the existence we set hp(JIt1ly) = 77T o
J"y*p(J5T1y) which satisfies Equation (3.3). The uniqueness for & = 0 and
k > n is evident and for 1 < k < n in a fiber chart (V,%), ¢ = (2*,4°) on Y we
can write hp as p; i, i, dzt Adx®? A --- Adx'* so the condition J"Fly*hp =0
for all v implies p;,4,...4, = 0, thus hp is unique. The mapping QW > p—hp €
Q};HW is called the horizontalization. The horizontalization considered as a
morphism of exterior algebras "W > p—hp € Q"W is a unique R-linear,
exterior product preserving mapping such that for any function f : W™ — R and
any fiber chart (V,1), ¥ = (2%,47) in W

hf = forn N h(df) = dif dx', dif = gfi + Y Uaf Yo ni
J1<j2 < <jk J1J2---Jk

(3.4)

where 0 < k < r. This follows directly from the definitions and the uniqueness
follows from
hdz* = dxz’ hdy?le---jk = yquj2---jkid$l’
which we obtained from (3.4). The function d;f : V"™ — R is called the i-th
formal derivative of f with respect to the fiber chart (V).
Similarly we define the horizontalization of tangent vectors as a vector
bundle morphism h : TJ" 'Y — TJ"Y over n"+1" by the formula hé = T,J"vo
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Tra™tl. ¢ for € € TJ:+17JT+1Y. We call h¢ the horizontal component of &
and p& = Ta"+7 . ¢ — h¢ the contact component of €. For p € QW and
vectors &1, o, ..., &, tangent to J"TY at a point JI Ty € W™ we define the
k-contact component pgp of the form p by

prep(JoT) (1, oy Ey) = Z Z

J1<J2<-+<Jk Jk+1<Jr+2<-<Jq
6J1]2m]kjk+l]k+2.”Jqp(J;’Y) (p§]1 7p£j27 s apgjk ) hfijrl yetey hgjq)

It is convenient to write hp = pop and pp = Y ¢_, p;p and extend the definition
to functions; for f : W™ —R we define hf = 7"t17™ f and pf = 0. Now we
have the canonical decomposition 7"+1"*p = hp + pp into the horizontal
component hp of p, which agrees with the horizontalization defined before, and
into the contact component pp of p. A g-form p € QyW is called contact, if
hp =0, and k-contact, if 7"t1™p = p.p. From

hp(J;+17)(£17 52) e 754) = (‘]T’y*p)(x)(Tﬂ-r—‘rl : 617 T7TT.+1 : £2a cee 7T7TT+1 : Eq)

we see that p is contact if and only if J"y*p = 0 for every smooth section -y
of Y defined on an open subset of W. This implies that contact forms form an
ideal in Q"W - the so called contact ideal. Further it can be proved that p
is horizontal if and only if pp = 0 and that the forms pip,...,pep are contact
(see [30]). If (V,4)), ¥ = (x%,y°) is a fiber chart on Y, then the forms

da’, 13 = dy§ — y5;da’, dyy,

for multiindices 0 < |J| < r — 1 and |I| = r form a basis of linear forms on the
set V", furthermore the 1-forms 7% are contact.

A differential form © € Q3 W is called Lepage form, if for each 7%%-vertical
vector field £ on W* we have hi¢d® = 0. A Lepage form O, is called a Lepage
equivalent of a Lagrangian A € Q) W if h©) = A (possibly up to a jet
projection, i.e. we denote a form on some jet prolongation and its pullback
by a jet projection by the same symbol). If we define the variational function
Oxq : Tow(Y)— R for a Lepage equivalent of a Lagrangian A by the same rule
as before for a Lagrangian, then their variational functions are the same. In
fact, for a Lepage equivalent © € Q" 1W we have

Or00) = [ I 6s = [ ryhes = [ = sat.
Q Q Q

Theorem 3.1. For each Lagrangian \ € Q%’XW there exists a Lepage equiv-

alent © € Q2W such that in any fiber chart (V 1)), ¢ = (2%, y°) (V C W) it
has the form

oL oL oL
= —d 7 7 H iy .
O\ = Lwy + (3%‘-’ paygi> n7 Aw; + 5y;-’i77] Aw (3.5)

where A = Lwy and w; = 1_a_wq 1S a contraction of wy.
oz
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Proof: We search for a form ©, with undetermined coefficients fi , ¥, such
that in any fiber chart ©) = Lwg + (fin® + f¥ n}’) Aw;. If we consider different
fiber coordinates (z*,47), then in the obvious shorthand notation we have the
following transformation rules for the jet coordinates

Y @_F@gjoy z7
Yi =\ 27 T ayYi ) oz

. 0% Oxdr x> 0%y, Oxr dadz 9ye ,  Oair Oxl
Uiis = Gii i 0z 05 | Do Yh oz oz | dyr i 0z o
oy’ 0y’ 022 0%y’ |, OxIr §xd? o%y° y , Ozt Qx>
oci gV ) Brnarn T auh oy Ve on o5n T ayrayrYn Vi gpi aan

Thus for the contact forms we get

Yy’ .,
Ld.ﬁj +
]

_ o i oy° oy°  oy° oxk 0zl |
T — i — i0de = P — v) 9 i
7=yt yde = oy Y (amk oy V% ) 927 927

= ai_dxj + % dy’” — (ay. oy yf) da' = 9y (dy” —yYda') = %9 n”
€T Y

ox*  Oy¥ oy” oy
e —o —0 71=1 3—0 8_0 v 6$j1
n5 = dy§ — y5,dz :[< Yy % y> —

Oxirdxk  Oyroxk 7 ) OmI
o 05 ,\ 0%
+( Y Y y”») -

o0y’ oy° Oz
k v P
dxir — Qyv ™7t ) 0z Ox* da” ¥ [(('hjlayP + ay”aypyh> ozJ } dy

» 83;]&
Dz ozk 05 | oyrozh v 9 T oy ik Bz

oy oz* 0%y Oxh o%y°  , oxr Oy°
oyP oxd Y~

Oz + oy” i

8@0 aga . 92xhh 9t 62 83:31 62 8£C]1 i
+ A=in-i Ak k Y yk dx
0z 0T Ox Oxi oyr °" OzI ayv@yp Ik 577

. oy’ oxF oy’ oy, Ozt , e

6y oz o+ d oy’ dxlr 9y da* " - 0y°

L7 ; d P
R R W T e W T S e

where in the last equality we used the fact that if (V, ), ¢ = (z°,57) is another
fiber chart on Y such that VNV # @ and d; the i-th formal derivative with
respect to this fiber chart, then for any function f: VNV —R we have d;f =

Now we can split f¥/ = f, () 4 fo () into a symmetric fs () and an antisymmet-

ric f([,ij ] part. But using the transformation rule for 779 and the transformation

rule w; = gxi Jw; where J = det &”1 is a Jacobian we see that only the sym-

metric term ggp gg gzb J(nf Awi+n) Awy,) contributes to the transformation of

the symmetric term 7}, A@; 47 Ay, and similarly for the antisymmetric terms.
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Thus we can take the antisymmetric part fyj] to be zero and we assume that
f¥ = f2*. This condition and what follows prove the global existence of ©,.
The condition h®, = X is satisfied. For any vector field

0 0 8 0

= 58’+£ +€] jk%

(3.6)

we compute what the condition on ©) to be a Lepage form requires (using the
fact that dzd A w; = §wp):

higd®x = hig(dL A wo + (dfi A7 +df¥ AnT) Awi — (fin] + f7n5;) Awo)
= (i¢dL — E'd; L —ignd; fL — ign; d; Y — flien? — fijign;’j)wo

oL oL
= <(£" —y )+ 5 & - yr€®) +

o .,
ayg‘( - yzgkrgk)

7 )

oy°

—(&7 —y7 &) difs — (& — yfu€")dify — fo &7 — yi€®) — £3(€7 — yz]kék)>

((55 G13) (€ =)+ (g~ dofi = 13) (€ - e
oL
+ (8:[/” ) ( i 7y1jk£ ))

y_ 0L L 0L, oL
7y 7 ’ 8y p@ygi

Thus we get

and we obtain Equation (3.5).

The Lepage equivalent from Theorem 3.1 is called the principal Lepage equiv-
alent and it generalizes the Poincaré-Cartan form ©) = Lwy + 8 % 17 Aw; of a

first order Lagrangian A € Q} xW expressed in a fiber chart by )\ = Lwy. For
higher order generalizations see [30]. It can be shown that the principal Lepage
equivalent of the Hilbert Lagrangian is of first order (see [35]).

For a Lepage equivalent ©y € Q='W of a Lagrangian A € Q] xW the Lie
derivative 0;r¢A can be expressed by the first variation formula

8JT€)\ = hZ'Jr—lgd@)\ + hd?:(]'r'flgc"')k. (3.8)
In fact, we have

6'Jr§)\ = a]'r-);:(h@)\) = haJr71§@)\ = hiJr—l&d@)\ + hdi]r71§@)\.
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Thus for the first variation of the variational function Aq by the vector field &
we get

(8']%)\)9(’}/) = / JT’y*a,]rg)\ = / JT’V*(hiJr—lgde)\ + hdiJ'r‘—lS@)\)
Q Q
= / Jr_l’}/*iJr—lgd(‘))\ +/ JT_I’Y*diJr—lf@)\
Q Q
:/ Jr_l’y*iJr—lgd@)\ +/ JTI_le*iJ'I‘flgg)\.
Q o0

This is called the integral first variation formula. It shows the role of Lepage
forms in deriving such a decomposition of the n-form 9;-¢A into two terms, the
first of which depends only on £ and on the Lagrangian and it corresponds to
the Euler-Lagrange expressions, and the second one only on the values of J™~1¢
on the boundary 92 of Q2 and on the choice of the Lepage equivalent.

Theorem 3.2. For the principal Lepage equivalent from Theorem 3.1 the Euler-
Lagrange term has a chart expression

oL oL oL .
3 = _ y - 7 - J j
higd© < oy~ ( oy~ ayg)) (€7 — Y7 )wo

(€ is as in Equation (3.6)) and the boundary term has a chart expression

. _ i 67‘6 87‘6 o __ ,o¢k
hdic©y = d; (Ef + (ayg dpayg) (€ —yi&) +

oL
ij

Proof: The Euler-Lagrange term is found immediately from the computation
in the proof of Theorem 3.1. Further we have

hdig®x = hd(LE'w; + (fo (€7 —yZ &) + f27 (&7 — y5i")) A wi
—(fon” + fnF) Nigw:)
= di(LE + fo(67 —yP &™) + [ (&5 — y5i€")wo.

Using Equations (3.7) finishes the proof.

3.2 Gauge Natural Structures

Many physical theories can be described as a gauge natural field theory, i.e.
they have the following gauge natural structure. A gauge natural structure
is made of the following items:

1. a structure bundle P which is a principal bundle over an n-dimensional
manifold X with a Lie group G,
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2. a configuration bundle C which is a gauge natural bundle of order (s, r)
which is associated to WP, !

3. a Lagrangian \ of order r» on C' which is gauge natural, i.e. )\ is a r-th
order gauge natural operator from C' to A"T™*B.

We show that condition 3 can be replaced by the equivalent one.

Theorem 3.3. A Lagrangian \ of order 2 on C' is gauge natural iff O is
Aut(P)-invariant, i.e. J3C f*©y = O, for all local automorphisms f € Aut(P).

Proof: First we prove that (J"Cf)*A = A holds iff A"T*Bf o X = Ao J"Cf,
where we denote for the moment by A the Lagrangian considered as a horizontal
form and by X the Lagrangian considered as morphism. We note that the func-
tors C and A"T™* B are considered to be restricted to the subcategory of PB,,(G)
with a fixed principal bundle P. Let u = J.y € J"C and &i,...,&, € T,J"C,
then A and X are related by A(u)(&1,...,&,) = Mu)(Tun"(€1), ..., Tun" (£0)).
Now the statement follows from the computation below (7" is a submersion)

(J"CH AW (&1 -, &n) = AT C ) (Tud"Cf(&1), ..., Tu"Cf(&n))
=Xo J"Cf(u)(Tu(n" o JTCL)EL), ..., Tu(n" 0 J"CF) (&)
= Ao J'Cf(u)(TeBf o Tun"(&1), ..., TuBf o Tum" (£n))
=A"T*Bf Lo Xo JTCf(u)(Tyn" (&), ..., Tur" (£0))-

~—

Using Theorem 2.9 we have the following diagram:

J'CP —2> AnT*BP
JTCfl i/\”T*Bf
J'CP —2> AnT*BP

The condition A"T*Bf o X = Ao J'Cf for all automorphisms f € Aut(P) is
equivalent to a Lagrangian A\ of order r on C' being gauge natural. Thus we
obtain that a Lagrangian A\ of order r on C' is gauge natural iff (J"Cf)*\ = A
holds for all automorphisms f € Aut(P).

Secondly we prove that J3¢*©) = 0 j24« for all local automorphisms g €
Aut(C). Let (V,), ¥ = (2%,97) and (V,4), 1 = (2,57) be two fibered
charts such that g(V) C V. We write % 0 gg 0 ¢~ = &' where ¢ = () and
g°ogoh~1 = 7. Now we can use the transformation rules for the jet coordinates
and the contact forms from Theorem 3.1 and we obtain in the obvious shorthand

n what follows we write C for the corresponding functor too.
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notation
oLJ oLJ oLJ
— d 7 i H i
@Jg)\ EJW0+<6U paygl>77 /\w,+ay?inj Aw
oL oLJ oL 8@” 0x? Ox’
=LJ J—d,—— | n° Nw; JIng A w;
wo + (8 4 pﬁll?i) . e, Oy T4 HT™ e

oL - oL oL
J3g 0\ = J3¢" | L —dy=— | " N0 + =—77 N,
g O g ( wo + <a o pﬁ@]%) n w; + 837%77] w)
oL - 0L\ oy° Ox? oL ( oy° ozt
—d v - Jw; -

oyg p337§i> oy " Bz - y3; (
0y° oxt ok oL - OL \ 0y° 0x?
dj——n" == Jwp=LJ —d -
TGy o ) gzt Wk = w0t (a 7 payg) dy” o
oL 4,9 0y° Ox! Ox* T oL 8y ozl Ox*

T ou7, oy o oz T Bgg. oy 02 07

—L‘Ju}()‘i‘ (

174

N Awj

J ”/\wk.

So the first and the last terms in the expressions for © j24+\ and J3g*O, are
same. But the following computation shows that the remaining terms are same
too:

oL ;L OL1 _(0Loyoxt oL (o oriod oy o
oyg P oy, N 9y 0ye 0xd ~ Oyfy \ 9y 0al 0xd 9z~ Jy° 09 Ox*

L 0% oxl ot | Oy, [0x" Ot Ol 0a' )\
dxlaye 01 oz* | aycayr Y \ 8z ozF T 97 ok
OL 0y dar 02\ 0L (oL . L\ 0og ox
Ayl dy7 0TI Iz ayg, v \oy, oy, | oy o

oL ( g0 ozt 9l AgP 94 »g° Ozl ozt

05, \ 9y 021 97 0% | Dy 9ot | Oaloy” 03 07k
%y, 0zt Oat _ 0yP daP 9x'  JyP | DaP da’
Oy oy v ozi ozk  Poye 977 dzF  dy° T 0z Ok
O dar | o' O On? D' 0ut 5P
Oy° 0z Fozk  Oyo 0z 0* OF! OxPoxd

(oL g oL \owox | OL Oy dar 0o’
oy 1oy, | dye 0z dyf, oy 0z Oz*

N oL g R B %% 0P drt  OxP 9x' dxd 2%
oyl 0ye \ 9ziozk "oz oxk 9z Poxk  Ox Oxk ozl dxrdza |7

+2
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where the last term is zero because
0ziozk  Pozi ozt  ozd Pozk Oz Ozk OF! dxroxd
o < ozl 0t daP 92t 07 )_ ox' 0 <8xl a:zq) B

" 97k \ 071070 01 | 0w 02l 0xrdze ) | 0xk 0xd \ 074 dal

Thus we really have J3¢*©, = © 24 for all local automorphisms g € Aut(C').

If a Lagrangian A of order 2 on C is gauge natural, then combining both
statements together we get J2Cf*©, = Ozcpy-a = Oy for all local au-
tomorphisms f € Aut(P), i.e. A is Aut(P)-invariant. Conversely, if \ is
Aut(P)-invariant, then we have ©(j2cf)-x = J3Cf*0, = O, for all local au-
tomorphisms f € Aut(P). If we apply the horizontalization, then we see that
(J2Cf)*X = X holds for all local automorphisms f € Aut(P). Therefore the
first statement implies that A is gauge natural and it finishes the proof.

&

The definition of the gauge natural structure given here differs from the
definition used in [16]. In [16], the authors assign to Lagrangian A of order r a
form ©, and define A to be Aut(P)-covariant, if (J"7!Cf)*©, = O, for all
f € Aut(P); instead of condition 3 they apply the Aut(P)-covariance condition.
They also apply one more condition which we do not need here.

In [16] the authors introduce the Lepage form (3.5) and higher order Lepage
forms without knowledge of original sources [28, 29]. However the generalization
of ©, as well as the covariance condition in higher order gauge natural field
theories (Lagrangian symmetries) are unclear.

3.3 Noether’s Theorem and Induced Variations

If we want to write Noether’s theorem, we have to introduce the notion of
an invariance transformation. If Y denotes a differentiable manifold and f a
local diffeomorphism of Y and f*p = p holds for a differential form p on Y,
then f is called an invariance transformation of the differential form p. In
the calculus of variations we deal with fibered manifolds and we use their local
automorphisms, which transform cross sections into cross sections. If J" f*p = p
holds for a (local) automorphism f € Aut(Y) of the fibered manifold Y and p €
Q,W, then we just say that f (instead of J"f) is an invariance transformation
of p. Let £ be a projectable vector field on Y. We say that £ is the generator
of invariance transformations of p, if ;~¢p = 0. This notion includes
the invariance of a Lagrangian or the Euler-Lagrange form F) given by
the relation E) = p1dO, for a Lepage equivalent of a Lagrangian A\. We say
that a section v € I'qw(Y) is an extremal of the variational function Aq
corresponding to a Lagrangian A € €2} W, if it is a stable point with respect
to all its variations induced by a vector field £ with support contained in 7=1(Q).
A section 7 is called simply an extremal, if it is an extremal for every variational
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function Aq. It is a consequence of the integral first variation formula (see [30]
or Equation (3.13) below) that v is an extremal of A if and only if one of the
following conditions holds: 2

1. For every m-vertical vector field £ satisfying the condition on & in the
definition of an extremal of A\q we have J"~'v*i;r-1dO) = 0.

2. For any fibered chart (V,), 1 = (2%, y°), 7 satisfies the system of partial
differential equations

E,(L)oJ'v=0, 1<0<m, (3.9)

where E, (L) are the so called Euler-Lagrange expressions, which ap-
pear in the relation (also proved in [30])

p1d©x = Eo (L) A wo. (3.10)

For the principal Lepage equivalent from Theorem 3.1 we have E, (L) =

(SBTE" —d; (SBTE;’ —d, 8‘2”;; )) (compare with Theorem 3.2).

3. The Euler-Lagrange form associated with A\ vanishes along J"v, i.e.

ExolJ'y=0. (3.11)

It can be proved (see [28]) that if g is an invariance transformation of a La-
grangian A, then it is an invariance transformation of its Euler-Lagrange form Fy.
Moreover, if g is an invariance transformation of the Euler-Lagrange form F,
then it brings an extremal «y into an extremal, i.e. goyogy !is an extremal too.

Theorem 3.4. (Noether’s theorem) Let ©) € QI 'W be a Lepage equivalent
of a Lagrangian X € €}, xW and let v be an extremal. For any generator § of
mwvariance transformations of A

dJ 7 Y i gr-1e0) =0 (3.12)
holds.

Proof: It is a consequence of the integral first variation formula

(@r-eNa() = /

Jrfl’y*iyq&d@)\ +/ Jril"}/*di‘]r71£@)\.
Q Q

The left hand side vanishes because € is a generator of invariance transformations
of A, i.e. OyreA = 0. The first term on the right hand side vanishes because 7 is

2We suppose that the order of the Lepage equivalent is r — 1 as before in the first variation
formula (3.8). But generally, if the Lagrangian is of order r, then the Euler-Lagrange equations
are of order less or equal to 2r. So in Equations (3.9) and (3.11) we should write J27+ instead
of J".
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an extremal. In fact, we have
/Jril’}/*iJ7~f1£d@)\ = / JT’}/*ﬂ'T’Til*iJrflgd@A = / Jr’y*i‘]rgﬂr’ril*d@)\
Q Q Q

:/ JT’Y*iJv'gpld@,\:/ J v igre(Eq(L)n° A wo)
Q Q

T o 8(yao’7) j
:/QEO.(,C)OJ 7({ o'y—axjfj)w():(), (3.13)

where we have used the canonical decomposition of #™"~1*dO, into the hor-
izontal and contact component. The horizontal part is zero, since it is the
horizontalization of an n + 1 form and from the contact component only the
1-contact part survives the pullback by J"v. We have also made use of Equa-
tion (3.10) and (3.9). Thus the second term on the right hand side of the integral
first variation formula must be zero. Therefore we see that J"~*y*dijr-1,0, =

dJ T % e ¢Ox = 0 holds for any generator § of invariance transformations
of L.

&

Equation (3.12) from Noether’s theorem is called (differential) conservation
law. The term i;--1,0) in the conservation law is called the current. The
case when the assumptions are relaxed to only £ being a generator of invari-
ance transformations of Ey in Theorem 3.4 (Noether-Bessel-Hagen theorem) is
treated in [28], [8] or [25].

Now we will discuss the first variation formula for the so called induced
variations for a gauge natural Lagrangian A. By the induced variation we
mean the variation induced by the lifted 3 vector field C¢ on the configuration
bundle C' determined by an (infinitesimal) generator of automorphisms &
on a principal bundle P which is a vector field such that FI5 € Aut(P). We
have seen in the first part of the proof of Theorem 3.3 that a Lagrangian \ of
order r on C is gauge natural iff (J"C f)*A = X holds for all local automorphisms
f € Aut(P), so Cf is an invariance transformation of the Lagrangian \. If £ is a
generator of automorphisms on P, then we have (FI/ “$)*\ = (JTCFI$)* A = A,
so differentiating at t = 0 we obtain

ajrcg)\ = 07 (314)

thus C¢ is the generator of invariance transformations of A and Equation (3.14)
is called the covariance identity.

Now we will find for the next computations a local expression of the generator
of automorphisms & on a principal bundle P. First we show that locally we can
write

G 0 FI} 0 ¢, (2,0) = ((FI})o(2), (FIf)1(2)a) (3.15)

3Here lifting means acting by the flow operator corresponding to a configuration bundle C.
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for all (z,a) € U, x G, where ¢, : 7 1(U,) — U, x G is a local trivialization
of P. Certainly there exists a map (F13)} : U, x G — G such that

$a 0 Flj 0 ¢! (2, a) = ((FI})o(@), a(F1; )i (2, a)) (3.16)

for all (z,a) € U, x G. The computation (- is the principal right action on P)

((F19)o(z), ab(F15), (z, ab)) = ¢ o FI5 0 ¢ (x,ab) = ¢4 o FI5 (65" (2, a) - b)
= ¢ (FI; (65" (2,a)) - b) = ¢a (o7 ((FI5)o(2), a(FL); (z,a)) - b)
= ((F1{)o(x), a(FL;)} (x,a)b)

shows that (F1%)](z,ab) = b=1(F15), (x,a)b for all z € U,, a,b € G. This could
be seen at once from the properties of 7 : (U, X G) Xy, (Uy X G) — G from
page 11, if we realize that (F1$)}(z,a) = 7(((F1$)o(2), a), ¢a o FI 0 97 1 (2, a)). If
we set (FI5)1(z) = (F1¥))(z, e), then we have (F1$)](z,a) = a~*(F1$)1(2)a and
so we obtain from relation (3.16) Equation (3.15). Now we write

(o) = (D) =@ (3.17)
(o) = (P ) =" @er. (3.18)

where ep, 1 < P < dimG is a basis of g. Furthermore, p is the right transla-
tion, Rp(a) = Re,(a) = Tepa(ep) denotes the right invariant vector field on G
corresponding to ep. So we get, differentiating Equation (3.15) at ¢ = 0, the
local expression of the generator of automorphisms &

0

€(,0) = €0(2) + Tepa(a(2) = €(2) o+ € (D) Tepaler)
= /(@) + €7 (@) Re(a) (3.19)



Chapter 4

The Hilbert-Yang-Mills
Functional

We analyze the gauge natural structure of the Einstein-Yang-Mills
theory, which describes the interaction of gravity with the Yang-
Mills field. We introduce the Hilbert-Yang-Mills functional, whose
Lagrangian A is given by the sum of the Hilbert Lagrangian and
the Yang-Mills Lagrangian. We derive the principal Lepage equiva-
lent of the Hilbert-Yang-Mills Lagrangian and the corresponding first
variation formula. We study the invariance of A with respect to au-
tomorphisms of a structure bundle and we discuss the first variation
formula for induced variations. We show that the currents in the
Einstein-Yang-Mills theory split into three summands, one of which
is the exterior derivative of the Komar-Yang-Mills superpotential.

4.1 The Gauge Natural Structure of Einstein-
Yang-Mills Theory

First we describe the gauge natural structure of Einstein-Yang-Mills theory.
Let (P,p, X,G) be a structure bundle, where the n-dimensional manifold X is
interpreted as spacetime. We shall consider Yang-Mills theories with a general
Lie group G. The configuration bundle for the Yang-Mills part is C. = QP,
where QP is the bundle of principal connections. The configuration bundle
for the gravitational part is Cy, = F'X x;; LMet R", where LMetR"™ is the
set of bilinear, symmetric, non-degenerate forms with the Lorentzian signature

36
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(1,n — 1) and I; : L} x LMetR® — LMetR", I;(a,9) = go(a™' xa™ ') is a
left action (L} = GL(R™)). We shall take C = Cy x x C. as the configuration
bundle for gravitation and Yang-Mills theory, which we call Einstein-Yang-
Mills theory. With respect to Theorem 2.8 and Theorem 2.7 we see that C' is
the gauge natural bundle of order 1 and C' = W1P x; (LMetR"™ x 5).

We wish to discuss the condition 3 in the definition of the gauge natural
structure in more detail. By describing all possible gauge natural Lagrangians
we will immediately see that the Hilbert-Yang-Mills Lagrangian has the required
form. We assume that the interaction Lagrangian for the Einstein-Yang-Mills
theory is of first order and we look for all first order gauge natural operators
C — A™T™*B from the configuration bundle C of the Einstein-Yang-Mills theory.
In what follows we prove the Utiyama-like theorem. Utiyama’s theorem [57] was
reproved and generalized by many authors. Our proof is based on the Utiyama-
like theorem in [25] for the bundle of principal connections implemented with
the gravitational part. For a higher order version of the Utiyama-like theorem
see [24]. Our assertion agrees with the result given in [16] where the authors
used a different method.

We will apply the orbit reduction , i.e. the following theorem [25, 34]. Let
G, G be Lie groups and let p : G — G be a surjective Lie group homomorphism
with kernel K. Let M be a left G-manifold and Q, M left G-manifolds. Then
we can define a left action of the group G on the manifold M by g-y = p(g) -y
for g € G, y € M. Thus, M becomes a left G-manifold. Let m : M — Q be
a p-equivariant surjective submersion, i.e. m(g-x) = p(g) - w(x) for all g € G,
reM.

Theorem 4.1. (orbit reduction) If for every point ¢ € Q the set 7=1(q) is a
K-orbit in M, then there exists a bijection between smooth G-equivariant maps
f: M— M and smooth G-equivariant maps f' : Q— M given by f = f' o,
i.e. we have the commutative factorization diagram

Mt

|7

Q

Proof: For every smooth G-equivariant map f’ : Q — M we have f’ on(g-z) =
f'(p(g) - 7(z)) = p(g) - (f ow(x)), so f'om is a smooth G-equivariant map.
Conversely, for every G-equivariant map f : M — M we can define f/' : Q — M
by f'(n(x)) = f(x). Such an f is well defined, in fact, for another representative
7(Z) = m(x), i.e. Z,2 € 7 1(q) = orbg(x) we have = kx with k € K, thus we
get f/(n(7)) = f'(x(k - 2)) = (k- 2) = p(k) - f(z) = e f(w) = f(x). Since 7 is
a surjective submersion and f = f’ o r is smooth, f’ is smooth by the universal
property of surjective submersion. Since p and 7 are surjective, there exists for
all g € G and ¢ € Q some g € G and # € M such that p(g) = § and n(z) = ¢,

hence we have f'(g-q) = f'(p(g) - m(x)) = ['(7(g-x)) = f(g-x) = p(g)- f(2) =
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G- f'(q), thus f’ is G-equivariant. The uniqueness of the f’ follows from the
surjectivity of , therefore we have proved that f — f’ is a bijection.

¢

From Theorem 2.9 and Theorem 2.11 we see that first order gauge natural
operators C'— A"T*B are in canonical bijection with W?2G-equivariant maps
J3C — A"T* By between the standard fibers JIC' = JIC(R" x G), A"T*By =
A"T*Bo(R™ x G). Using Theorem 2.4 we get the left W2G-manifold J}C =
T} (LMetR"™ x S) with the left action ! given by Equation (2.6), further we have
the left L1-manifold A"T* By = R with the action given by

t=|deta| 't (4.1)

where ¢, € R and a € L..

Now we are going to describe the action Il from Theorem 2.7 in more detail.
For the fiber we get S = J}(R", Q). = L(TyR", T.G) = L(R",g) = g @ R™
and for the group WG = L. x T!G = (L. x G) x (g ® R™), where in
the last identification we use the isomorphism TG — G x Jj(R",G). given
by J§s +— (s(0), J5(s(0)7! - s)). We want to express the action l2((4,a,Z),Y)
with (A,a,”2) & J6076)¢ e WG, A = Jtpo, a = pryopp(0,e), Z = To(a=1¢1)
and Y = Tps € S, where § = pryos for s : R = R” x G such that s(0) =
(0,€). By definition Q¢(Jis) = [J3(pa—1 0 ¢ 0 50 ¢y')], where p denotes
the principal right action of G. Then we evaluate pryop,-1 o ¢ o s(z) =
Pry0pg-1 0 ¢ o Pg(ac)(a?ve) = Prg©Opg-1 © Pg(m)(¢0($)v¢1(m)) = ¢1(x)§(x)a_1 =
conj, opo (a~t¢y,5)(x), with u denoting the multiplication in the group G and
conj, is the conjugation (the inner automorphism) associated with a € G
defined by conj, : G — G; conj,(z) = ara~'. By applying the tangent functor
we find that

12((A,a,Z),Y) = To(pryopg-1 0 posody') = Ty(conj, oo (a”'¢1,5) 0 dy )
= T,conj, o T(e,e)lu'(TO(a : ¢1)a TOE) ° TOd)(;l) = Ad(a)(Y + Z) © Aila

where Ad : G— GL(g); Ad(a) = T.conj, is the adjoint representation of G
and in the last equality we use the relation T4 p)u(Xa,Ys) = Ta(pp)Xa +
Tp(AoYs), here N\, : G— G, A(z) = ax denotes left translation and p, :
G — G, po(z) = za right translation.

Denote by e; the canonical basis of R” and e the dual basis of R” and ep
the basis of g. Each element g € LMetR" is then uniquely written in the form
g = gij(9)e’ ® e’ and each element I' € L(R™, g) is uniquely written in the form
[(e;) = TP (M)ep, where 1 <i<j<mnand 1< P <m=dimG. The system of
functions (gi;,I'7’) defines a global chart on LMetR"™ x L(R", g). So there exists
a canonical global chart

9i;(J58) = 9:5(s(0)), giji(J38) = Di(gijs)(0),
I (Jgs) =T7 (s(0)), T'};(Jgs) = D;(I']s)(0)

K3
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on T}(LMetR" x L(R", g)). The coordinate functions on W2G are defined by

a;"(J(ZO,e)d)) = DJ¢6(0)a azP(‘](20,e)¢> = Di(ailgbl)P(O)v
a;k(J(QO,e)¢) = DJDk¢6(O)a azl';(J(QO,e)qs) = DiDj(CLil(él)P(O)’

where a = pry 0¢(0, ). The action of W2G on T!(LMetR™ x L(R", g)) is given
by Equation (2.6), i.e

P (J.e8 Jos) = Jo(Lo (b7 o W'gob)iogy ' s0d)), (4.2)

where b denotes the identification b : R" x WG > (z, Jj ,8) = J{y (T2 09) €
WT(R"x Q) forr = 1, 7, = t, xidg and ¢, is the translation R” — R", y — y+z,
so we use the inclusion W2G — WW1lG, J(o 0® J (b_ o W1¢ ob), and
I is induced by [; and Iz (see the proof of Theorem 2 8) Now we want to
express Equation (4.2) in coordinates. For some J, ¢ € W,G and (g,T) €
LMetR™ x L(R™, g) our /; and Il have in coordinates the form

gz‘j(J(lo,e)fb g) = df(J(lo,e)¢)&é‘(=](107e)¢)gkl (9) (4.3)
le’:.('](lO,e)(b ' F) = Ag (pr2 Oﬁ(‘](lo,e)¢))(FjQ (F) + agQ(J(lo,e)(b))dg(J(lo,e)(b)7 (44)

where a; ( 0e)¢) Di¢y " (0) and AS is the coordinate expression of the

adjoint representation of G. Using the identity (b= o Wl¢ o b); o gbgl(x) =
J(lo,e) (151 0 ¢ 0 Tyy(x)) we deduce that the action of W2G on Tt (LMetR™ x
L(R"™, g)) has the form

Gij = ayagu,
A AR Gim,n + (@5 + G5aRY) Gim,
I7 = AL(a)(TF +af)al,
= Af(a)Taka) +AQ( Jagaka + DEp(a)IPaftaka
+EQR( ) aftafa + AP( )(FQ +ayg yak,

17

gl] k=

where we introduced shorthand notation, e.g. g;; = g:;(J}s), gij = gij(J(QO 0®

Jis), aé— = a;-(J(QO)e)qi)), I? = Trf(J}s) ete., DgR(a) = DRAg(a), ESR(a) =
DRAg(a) +AL(a)Dr(Dg((a- (1))t a-(.))%(e))(e), the first input corresponds
to Dg and the second input corresponds to Dg.

Before we apply orbit reduction we replace the coordinates (gi;, gij k. re vk )
on T, (LMetR" xL(R", 9)) by (95, Tijk = 3(ijh+9ing—9jna). UL Rl =T+
CQRFQF] ,S” = ng)) where [ ] denotes antisymetrisation, () symetrisation
(both without a factor 1/2) and cg r the structure constants of G. Then the
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action of W2G on T} (LMetR™ x L(R", g)) has the form

Gij = dfdé'gkly
T, jk = aia] ap Ly mn + &éd}g}glm,
— AB@(TF +a®)a,
RP- = A () Rijafa,
55 = AP( )Skla al +AP( )akla(Z o —|—DQR( )Fgale’&&é)

—|—EQR( )agalRa(Z aj —|—AP( )(Fg —|—a,€)afj

We define 7 : T} (LMetR™ x L(R", g)) — LMetR"™ x (g @ A?R"™),
(9ij Ti i, TF, Rf;,SP) — (gij,RZ), so it is a surjective submersion and p :
W2G = L2 x T2G— L. x G, p = 7! x 3. In the following theorem R is
considered as the left L1 x G-manifold with the action given by (4.1) (G is
acting trivially) and LMetR" x (g® /\QR"*) is a Ll x G-manifold too (with the

action given in the coordinates by g;; = a¥ gkl and R L= AP( V Ry Q kal)

Theorem 4.2. For every W2G-equivariant map f : T} (LMetR" xL(R", g)) — R
there exists a unique L} x G-equivariant map f': LMetR™ x (g @ A2R™) — R

satisfying f = f' om.

Proof: We apply Theorem 4.1. We see that 7 is a p-equivariant surjective
submersion. Thus we only have to prove that each fiber of 7 is a K-orbit. The
action of K on T!}(LMetR™ x L(R™, g)) has the form

9ij = Gij»

Tije = Diji + g 9i,
P P
R Rm,

SE=5E+al+ D5g(e )F(Zaj) + Ebple)alali + (Tf +af ).

From this we get 7' (gi;, R]) = orbk (g45,0,0, R}, 0).

l]’

&

Theorem 4.2 is equivalent to the following modification of Utiyama’s assertion.

Theorem 4.3. For every first order gauge natural Lagrangian of the Finstein-
Yang-Mills theory A : C — A™T* B there exists a unique natural transformation
A Cyxp(() Xaa g @ A2T*B) — A" B satisfying A = X o (idg, xB R), where
R:C.=Q—(.) xaq 8@ A*T*B is the curvature operator.

Proof: We apply Theorem 2.9 and Theorem 2.11.
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In other words, our interaction gauge natural Lagrangian depends on its
variables only through the metric and the curvature of the principal connec-
tion. We can take as the interaction Lagrangian the Yang-Mills Lagrangian
i.e. corresponding to the L. x G-equivariant mapping f’ : LMetR" x (g ®
NR™) =R, (9i5, RE) — —(1/4)R£»gikgﬂRlehpQ\/§, where g = | det g;;| and
h denotes an Ad-invariant form on the Lie algebra g, i.e. invariant with respect
to the adjoint representation Ad of G in the sense that for all g € G, X, Y € g
the relation h(Ady(X),Ady(Y)) = h(X,Y) holds, and so f’ is indeed L}, x G-
equivariant.

Analogously it can be shown [54] that every L32-equivariant mapping from
the left L2-manifold 72LMet R™ to the left L}-manifold R depends only on g;;
and the curvature R;jr;. We can take as the free Lagrangian the Hilbert La-
grangian corresponding to the L) -equivariant mapping which sends (g;;, Riji)
to g% gkth-kj /9. Because every gauge natural operator of some order can be
considered as an operator of higher order, we can think of the first order inter-
action Lagrangian as being of second order and we simply add the interaction
and free Lagrangian to get the total second order gauge natural Lagrangian.

We now introduce a global variational principle for the Einstein-Yang-Mills
equations. Let X be a n-dimensional manifold and let (P,p, X,G) be a struc-
ture bundle over X. By the Hilbert-Yang-Mills Lagrangian for P we mean
the Lagrangian A = Ay + Ay on J2C, where in any fibered chart (cf. Equa-
tion (4.9)) we have

1 A

Ar = Lgwo = Ry/gwo, Aym = Ly mwo = —ZRf;glkgle;;thPQ\/ﬁwo- (4.5)
In these equations R is the scalar curvature, RY, = I'T, — TP, + 5 .T¢TF is
the curvature (field strength) of the principal connection (Yang-Mills field) ',
hpg are the components of an Ad-invariant form on the Lie algebra g. We
define the Christoffel symbols by I‘j-k = (1/2)9"(gsjk + gsk,j — gjk,s)- The chart
expressions of the curvature tensor, the Ricci tensor and the scalar curvature
are given by R’} = diT% — diT, + T, 15 —T4T%,, Ry=RJ,,, R= ¢ Ry

We summarize that the gauge natural structure of the Einstein-Yang-Mills
theory is made of the following items:

1. a structure bundle (P, p, X, G), where the n-dimensional manifold X is
interpreted as spacetime,

2. the configuration bundle C = C; x x C. =2 WP x; (LMet R™ x S) which
is a gauge natural bundle of order 1,

3. the Hilbert-Yang-Mills Lagrangian A on J2C.
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4.2 The Hilbert-Yang-Mills Lagrangian and In-
duced Variations

We denote the contact forms for the gravitational part by n;; = dg;; — g_ij,lda:l,
Nijk = dgijk—gijridz’ and for the Yang-Mills part by n = dU'f —T';dx7 (simi-
larly for the vector field §). Furthermore, we denote by G5 = Rg;—(1/2)gs R the
components of the Einstein tensor, by 7% = (1/2)(RF“ R}, - (1/4)R5R§§g“b)
the components corresponding to the stress-energy tensor and by VijDi =
djRp + Rpcisls — RPETY; the components of the covariant derivative with
respect to the C-prolongation of the principal connection with respect to the
Levi-Civita connection (see [25]).

Theorem 4.4. The principal Lepage equivalent ©y of the Hilbert-Yang-Mills
Lagrangian has a chart expression

1 . g
0, = g(R— ZRijg)wo + VIR0 Aw;
1 Ilm ia bj 2 il _ma bj ma lb _ij . )
+2\/§(g g'“g 9“9 9" + 9" 9" 9" ) gmi.iNab N w;
+v9(9° " — g7 9"V nap,a A w;.

The Euler-Lagrange term hizd©) has a chart expression

higd®) = \/G(—G® + T)(Eap — Gabm€™)wo + VgV R (X —TF €™)w.

The boundary term hdi¢©y has a chart expression
: Lop phi) ¢ W _ij _ il bjypa m
hdie©y = d; \/57 R — ZRkiRP &+ \/§(9 g7 —g" " )T (Eap — Gab,m& )

+\/§le2 (gzp - Fﬁmgm) + \/g(gadgjb - gjdgba)(fab,d - gab,dmgm)>w0-

Proof: We use Equation (3.5) to compute only the Yang-Mills part, because
the gravitational part is standard (cf. [35]). We have

a‘cYM ilom mi
op = CBsTngg" Biihrav/e = cEsTh RE'/g
0Ly m ik ij
arF. Y "' R hpo g = REVA,
@]

thus we get the principal Lepage equivalent corresponding to the Yang-Mills
Lagrangian

1 i i
Oxnyn = _\/ngf;RIgWO + \/ﬁngan ANwj.
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Now we want to use Theorem 3.2 to compute the Euler-Lagrange term and
the boundary term. Using the identities dg°% /0ga, = —(1/2)(g"*g*® + g'®g**)
and 9,/9/0ga = (1/2)\/99°" we get

0Ly m 1

g~ 5 2BR + RTURE ) + REREG™) V.

Using the identities d;/g = (1/2)\/99" g1 ; and gri; = grl]; + 91Ty we
obtain

higdOxy y = vI(T™ (Eab — GabmE™) + Vi Rp (8 — Il &m))wo

hdie®y,,, = d; <_\/§4RkPiR§€3£j +VIRE(ES —T7,¢ )) wo-

Therefore we get from Theorem 4.4 the Einstein-Yang-Mills equations
G® =T VR =0 (4.6)

(see e.g. [3, 4, 27, 58]).

Now we will analyze those properties of the action function associated with
the Einstein-Yang-Mills Lagrangian A, which follow from the covariance identity.
First we find the chart expression of C¢.

Lemma 4.5. If a generator of automorphisms & on P is locally given by Equa-
tion (3.19), then its lift C& on the configuration bundle C' for the Einstein- Yang-
Mills theory is expressed by

L o ed N\ o
Ce=¢8575- (&ciglj + MQH) .

06" p0g\ 0
Oxt 7ozt ) ok

+ <c§QgRF? + (4.7)

Proof: The lift C¢ is given by € = (%C’Fﬁ)o - (% %1 Z 0 WlFlf)d where

x1Z is defined before Theorem 2.4 and we denote by Z = LMetR" x L(R", g)
the fiber of the configuration bundle C' for the Einstein-Yang-Mills theory. Let
(Uas o) be a chart on X at @ = 19(0), ¢o : p~1(Us) — Uy X G a trivialization
of P,

B :p N (Uy) = Uy x WG =2U, x (L} x TG);
Jlo,ey¥ = (@, (Jo (t (@) © P 0 %0), g (P 000 0 b1 0 5t 0 Ly, ()

a local trivialization of WP with the inverse

(@, (Jo e, J5a)) = T,y (Da © T 1oy © (0 pry, o (@0t opry,pry))),
bo 10 H(Ua) = R" X G5 da = (o X idg) © ¢a,



Chapter 4. The Hilbert-Yang-Mills Functional 44

1 is the multiplication in G. We denote by 7 the 7 defined on page 13 to
distinguish it from the 7 defined on page 11 and used below, i.e. 7y =t, x idg,
e is the unit in G, € is the unit in W,!G and let ¥, : 771 (U, ) — U, x Z be a local
trivialization of the configuration bundle C. If we write é : R" - G; é(y) = e
then we get

O 1 (z,8) = Dt (z, (Jpidrn, J5€)) = J(o.0) (05" © T4 10 (a))-
So we have
W, 0 [WFL,idy] o Wl (x, f) = (7, pryoW,) o [WIFL,idy] o [, (2, €), f]
= (m,pry0W,) o [WIFIL 0 &1 (2, €), f]
= (5o WIFL 0 & (x, &), pry oW, [WIFIS 0 &1 (x, €), f])
= (W'FL§)g 0 o @ (x, &), 7(W'FI 0 &1 (x, 8),
O (WFL)g 0 po ' (2,8) " - f)
= (FI}" (x), 7(®, ' (FI" (), &), W'FL; 0 @, (,€)) - f)
= (FI3" (x), T(J(lo,e)(ég’gl °© %(qga)o(plfo (x)))a W'FI; o J(lo,e)(ég’c:l °© 7~'(q;a)o(gg))) - f)
= (FI?* (x), 7'<J(10,e)(¢3;1 O T ()0 (FIO (2))): J0,e) (FIz 0 6" o T Beo@)) - )
= (F1(2), o, (T_ gy ito ay) © Pa 0 FLi 065 05 3 (0y) - ). (48)
Now we can use the fibered coordinates z?, g;;, I on C induced by the global

chart on Z from page 38 and the local trivialization ¥,, i.e. the coordinates
given by

z' = ' opry oW, = pr; oy, o pry o¥,,

gij = gij opryo¥,, IF =TF opr, o, (4.9)

to compute the components of the lift C¢. From Equations (4.3), (4.4) and (4.8)
we get

¥ = (W'FI;, g (U (2, 9,T))) = 2 (FI° (2)),
9 (J0,e0 - 9) = @5 (J(o,)9)a@5 (S0 )1 (9)
I (J{o.e®-T) = AG(pry OB(J(lo,e)QS))(F?(F) + a?(Jﬁo,e)aﬁ))&?(Jﬁo,e)qﬁ),
=7 G © Pa 0 F 0 651 075 ) )

Now we have to differentiate this at t = 0. We get

(42) —¢ (o)
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Since we have

~k( 7l ~ 2

@5 (J0.6) P g o e150 oy © P O FF 005 075 0))

= Di((tftpa(FlfO(z)) 0 Py O Flt o gpa o t«pa(fb)) l)k(O)
= Di(z" o F1{* 0 ) (a (FIP* (2))),

where in the last equality we used an identity for the flow of a vector field
(see [36] page 78), we get

d ~k I3 7—1 ~
(dt @5 (Ti0,0) (F_ (g0 (F150 o) © P O FLG 005 075 ) .

k
(jt (" °F15°°@a1><s0a<F1§°<x>>>) = D& (pula)) = ~ o

0

and so we obtain

d N :); (o 23
<dtg7,]) = (8 -0 +0; O J)gkl = - <axigkj+6$jgil ) (4.11)

where we denote for simplicity gx; = gri(g). We write

a(t) = pr2 B o) (75,0 r160 a) © Do 0 FlE 0031 075 0))
_ ~ n & -1~ _ 3 -1
= PT2OT_ (5 o(kif0 (2 © P O Flf 0 00”0 75 ) (0)(0: €) = Pra 0da 0 Fly 0 057z, €).

Then the computation

(thP( (t ))ep)o = <(ZAd(a(t))eQ>0 =T.Ad <dta(t))0 €o

=ad (jt (t ))OBQ = ad(¢®(z)er)eq = [¢%(x)er, eq)

= gR(x)[eRa eQ] = gR(x)CII;QeP’

where we have used Definition (3.18), shows that

(45000 = choe"

where we write for simplicity ¢ = ¢%(z). Let us denote a” = prpoexp™!

the canonical coordinates on a neighborhood of the unit in G corresponding
to the basis ep in g, i.e. we have (&%)e = ep. Using the identities for the
multiplication p and the inversion v in the group G

Tiapyt - (Xa, Yp) = Tu(pp) - Xa +Tp(Ma) Vs, Tav = ~Te(Ag-1) - Ta(pa-—1)
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for all a,b € G and if realize that for the left translation A and the right trans-
lation p the relation A, = p. = idg holds, then we can compute

d Qi1 (- 2 €. 5-1, =
(dt“ﬂ' 0.0 Gumo) © Sa °Fli © 0”0 T4 0@)) |

d ~
- <dtDj(a1(t)(pr2 09a 0 FIj 0 65" 0 75 ) 76)))62(0))0

d 1 -
=D, (dtaQ opo (rvoa(t),pryod, o Flf og o T(im)o(w)( ,6))) (0)
0

d d .
- ( B <dtaQ ° a(t)>o * (dtaQ 0 Pryoga o Flf 0 651 0 75 oy ’6))0 ) v
_ D d Q FIE —1 -1 d d
=D; aa o pryods o Fl; o ¢y " o (" x1dg) o (ty, (2) X ida)( ,e) ) (0)

Q
= Di(E9 003" 014, )(0) = Dy(E%(g5" ())pa(e)) = 2o

Thus we get
d=p P ¢RTQ ] PagQ j P Qaﬁj
(dtri >0 = cnet L & +6Q$63 B 5er ozt
oer ¢l
P +R1Q P
=creé Ty + B - I ph (4.12)

where we denote for simplicity F? = FJQ(F). From Equations (4.10), (4.11)
and (4.12) we immediately obtain Equation (4.7) and this finishes the proof.

&

The gravitational part of the lift C¢ agrees with [35] and the Yang-Mills part
with [19] and [20].

The notion of the jet prolongation of a vector field is standard (see [28]
and [25]). If (2%, y?) are fibered coordinates of a fibered manifold Y, then the 1-
jet prolongation of a projectable vector field ¢ = (*(x)(9/0z*) + ¢ (z,y)(9/dy°)

is
o L0 (o o, 9\ O
oxt +¢ oy° * (éhi * oyP Yi = pgiYi dyg’

J¢=¢ (4.13)

Lemma 4.6. If a generator of automorphisms & on P is locally given by Equa-
tion (3.19), then its lift J'CE& on the first jet prolongation of the configuration
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bundle C for the Einstein-Yang-Mills theory is expressed by

o (o0 og \ o
Oxt 929 T P 98 0gi;

9" Lp 65]’) 0

Jice = ¢

P (RT1Q
+<CRQ§ Uit 50 ~Vige | are

(ee e ae el o\ o
02028 I T Brigpk I T ik T g Ik T 9l gk 09ij k

o¢r o¢r ock
P Q P P ¢RPQ
+<CRanjri i dxidzi Lk Oxi0xI T eret Ti;

ok o p O 0
——TI, - = | == 4.14
Ozt B T ogi | Tl (4.14)
Proof: This follows immediately from Lemma 4.5 and Equation (4.13).
¢

Now we can proceed to the discussion of the first variation formula of the
Hilbert-Yang-Mills Lagrangian for the induced variations. We denote by

£ = V(-G +T%), Fp = GV, R
the Euler-Lagrange expressions of the Hilbert-Yang-Mills Lagrangian, and by
5“5 = ¢/ —T/¢" the components of the vertical part & of the generator of auto-

morphisms £ with respect to the principal connection. We define the Komar-
Yang-Mills superpotential by

1 iej ij
ve = 5Va(VIe! = RIE )wyj,

where V denotes the covariant derivative with respect to the Levi-Civita con-
nection. The first term in the Komar-Yang-Mills superpotential is the so called
Komar potential [26].

The following basic theorem clarifies the structure of the currents associated
with vector fields on the underlying principal bundle P.

Theorem 4.7. For the principal Lepage equivalent of the Hilbert-Yang-Mills
Lagrangian ©) the Euler-Lagrange term has a chart expression

hijioedOx = —E(Gacdb€ + Goedal® + Gab,c£¢)wo
+Fb(cho€" TP +die” —TTdi¢? =TT, €™)wo.
The current has a chart expression
in0eOs = (28 gy 67 — FL& wi + hdve
+VIEN(G7°0™ = 9°°0") (Nab,c — Thnac) + RnE] A wij. (4.15)
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Proof: We get the Euler-Lagrange term from Theorem 4.4 where we substitute
from Lemma 4.6

_(9€ 09 N e  p ppe 987 pO€
§ij = — (amigzj + 57 9 | §i =crl Ty + ozt -1 oxt’

and we use the fact that 9¢!/0z' = d;&!, 9¢F 0zt = d;&F, because ¢ and ¢F
depend only on z.
Let us denote by

9 a¢! l+6'7§l 1\ 9
ozt 9z T T i It 09ij

I N SN AN
022028 7 T i gak I T Pui Ik T i Ik T 90 G0k | B9k

JIo=¢

the gravitational part of the lift J!C¢ from Equation (4.14). Then we can write
ichg@)\ = iJngg@)\H + i]lcg@)\YM.
The gravitational term i j1¢,¢O», was computed in [35]
i510,eO0n, = wwi + /€ (979" — 6" ") Na,e — ThpNac) Awiy,
w' = L3¢ + L;Z"dpﬁj + L;pqdpdqu,
Li, = Va(Rs}, — (979° — ¢° g™ ) gk T2, Tl — 9% T2,
+g T2 T — (679" — 9" 9%7) gpq,sm);
L = G000 T, + T~ 27T,
. 1 . . .
L =~ /(28hg" — 81,9 — 6g7).
For the Yang-Mills term i j10¢0\,.,, We get
. 1 y -
i1ceOnyy = _\/giRkPjRijzwi + ﬁRg(CngRP? +dig” — T dit")w;
~VIRBE D Nwjp.
Thus for the whole current we obtain
) , 1 i iy
ince®s = [w' — VI RGRYE + VIRp (Rt TT + die” — T d;")]w;
o _ i
+VGE (979 — 9% ") (Nav,e — Daptlac) + REME | A wiy.
Now we want to write the current as in Equation (4.15). The first varia-
tion formula implies that the covariance identity 0j2ceA = 0 is equivalent to

hij1ced®x+hdi 10O = 0. Since the contact part of the current is annihilated
by the horizontalization h, we get

_Sab(gacdb56 + gbcdafC + gab,cfc)
+Fp(chot T¢ +die” — TP —TT em) +dp' =0, (4.16)

) ) 1 o S
v =w' = Vg RGREE + IRp (Rt T + ;" — Ty d;e").
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Now we use the same strategy as in [35] and write v* in the form
vl = MIE + MPdye + MPdyd, &7 + Npg™ + N d;e™, (4.17)
i i L op pkisi i i inQ i i
M; =L} — \/§1RMRP5J-, MY =L — \/gR{Ty, M = L™
Ni = VaRpeRoly, N = VaRy.
If we substitute Equation (4.17) into Equation (4.16) we get

—E°(2G5cdab® + gav, k%) + Fp (e "TY + di” —T]dig/ —TF,.™)
+d M+ (MP + d; MP)dye + (M + di M;P)dydpe? + MPd;dgdy¢?
+d;N5¢? + (NP + d;N'PYdpe? + N9 d,d,&”
= (=E%ap; — FpI L, + diM))E + (=267, — FRTR + MP + d; MP)dp &7
H(MP + d; MP)dydp& + M;Pd;dgdye?

HFpchoT? + d;ND)ET + (F + NP + d;N'P)dp€” + NPdydye’ = 0.

The last equation holds for every generator of automorphisms iff the following
identities hold

—EDV G — FoIL + d; M =0, (4.18)
—EP2g,; — FET R + MP + d; M;P = 0, (4.19)
%(M;“’ + MPT) + d; MP? =0, (4.20)
MPT 4+ M + MP = 0, (4.21)
nehol? +d;iNG = 0, (4.22)

FY+ NV +d; NP =0, (4.23)

N% 4+ NP = 0. (4.24)

Since Ng = \/ﬁRg and Rg.f is antisymmetric in the upper indices, the last
identity is trivially satisfied. We have
M+ MPdy& + MPdyd,8
= Mj& +dp(MPE7) — dpy MiPE + do(MPdy¢7) — dg M;PdyE7
= M;& — dpMP§ + dpd M + dy (MPET) + do (M dpE7) — dp(dg M;PIE7)
= (M; —dpM;" + dpqu;-pq)fj +dp(M;" — qu;pq)fj + Mj’-pqdqu)
We define a (n — 2)-form n¢ by

1 i i j i i
Ne = 5((Mjp - ququ>§J + Mqudqgj)wip-
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Since dz* A Wip = —5pr + 5’;%— we have

1 i i j i j
hdng = Sdi(M" — dg Mj™)E + MPd,&)dz" A wiy
= fidi((Mjp — ququ)éj + Mqudqu)wp
+§d;v((]wjp - ququ)fj + Mqudqgj)wi
= idp((Mjp - Mf - dq(Mqu - M]p q))fj + (Mqu - MJP q)dqu)wi-
Thus we get
(M}&? + MPdy8? + MPdydg& w; = (M} — dp M + dpdy MP)E w;
+§dp((Mjp + M]p - dq(Mqu + M]P q))fj + (Mqu + MJP q)dqgj)wi
1 i i i Sa\N ; ; j
+§dp((Mjp - MJP - dq(Mqu - M]p q))gj + (Mqu - MJP q)dqgj)wi
= (M} — dp M + dpdy MP)E w;
1 i ; i i\ i i ;
Sy (M 4 M = dy(MP + MPD)E + (M + M)dy8 ) + e,
Taking into account Equations (4.20) and (4.21), we have
1o i i ; i\ ¢ i i ;
g(Mjp + M]p - dq(Mqu + Mjp q))gj + (Mqu + M]p q)dq£J
sippj 1 ivsi  Larai ; 1 iD g
= —d,M; Per + iqujq Per — §MJ‘? P&l = _idq(MJq Pery.
If we set
1 P
e = gdq(Mqufj)wm
then
1 ipq -5 k 1 ipq ¢j 1 ipq ¢j
hdpe = 6dkdq(Mj E)dx" N wip = —gdidq(Mj &wyp + édpdq(Mj & w;
1 i i o 1 i i iqy o
= gdpdq((Mqu - MJP NENwi = _Edpdq((M]q P+ Mqu + M]p DI
1 i
= —idpdq(MJg PeNw;.

Therefore we obtain

(Mg + MPdy€ + MPdydy& )w; = (M} — dpMP + dpdg M ") w; + hdre,
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where
Te = Mg + g
1 ipq g 1 i i i i ;

= édq(MqufJ)wip + 5((Mjp - ququ)fj + Mqudqu)wip

1 ipej ipq ¢ i ; ipq o i j
— 6(3Mjp£] _ 3ququ§'7 + 3Mqudq£'7 + ququ§] + Mqudqu )Wip
_1
6
Taking into account Equations (4.19), (4.20) and (4.21), we have

(BMPE7 — 2d, MPIET + AMPUd &7 \wp.

M} — d,M? + dpdy MP? = £702gy; + FRIF — dyp (M + M;? — d MP?)
= EM2gy; + FRIF + dpdy (MIP + MY + MP?) = £°2gy; + FRI}
Thus the first part ("M” part) of the current has the form
(Mg + MPdy&? + MPdydy & )w; = (E2gy; + FRIF)E w; + hdre.

We can proceed similarly for the second part ("N part) of the current with
an obvious modification - the highest M;** can be replaced by zero and we have
to use the identities (4.23) and (4.24). So we define ;¢ instead of 7

Lo
Ke = §NJP§Jwip.
Equation (4.24) implies that we need not introduce any form corresponding
to pe. From Equations (4.23) and (4.24) we get
Nj —dyN} = —F5 = dy(N}' + NT) = ~F}.
Thus for the whole current we have
inceOx = (E02gy; + FRITEw; + hdr — Fi&’ w; + hdry
+VEE (99" = 9 ) b — Tapnac) + RE L) A wi
= [(26%gy;¢ — Fi(¢ =T/ |wi + hdve
+VGE (979" = 6" (av.e — Tiiynac) + REnf) Awij,
where
ve = 7e + ke = c(3MTE) = 20, MU + AMTdy€) + 3N PN wip
= 6(3L;.p£] —2d, L +4Ld ¢ 3\/§R€2’F§9fj + 3NPE Ywip.

This is nearly the required expression for the current. To finish this proof it
suffices to show that the superpotential v¢ has the demanded form. But from
the identities

dgv/9 =T, dgg™ = —g"Thy — ¢ T},
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we get
i 1 i i i
dg L = = 5dg\/9(2859" = 879" = 64"

— 5 VI(205deg" — 67dgg™ — 6deg™) = =5 /9T, (20,97 — 79" — 6g"")

+5V9(205(g" Y, + g7 TY,) = 87(6" Ty + g™ T,) = 67("" Ty + 9" T7,)
1 r ) 7 1 3 r
= 75\/§qu(26]'91”1 - 6?9 q) + 5\/-59 ijr
+5 V0285 (6" TR, + g7 TY,) = 67 (6% Ty, + g™ T,)) — 5Va(g"™ Ty, + g TY))
1 i r i i g
= 5VI205(g" T}, + g™ T, — g"T,) = 07 (6" Ty + g™ T, — ¢"'T5,)
1 3 r 7 7
+5v9(g" ], = 9Ty — g™ 1))
= LVASMTL, — 87gNTE) 4 L GG, — T — T,
Thus we have
BLIPET — 2d, LI + ALPd, & = 3,/g(01g" TP, + g'PT2, — 2gP°T% )&
—V/9(285" Ty — 87 g}, )& — /g(g™T, — ¢"'Ty; — g™ T )¢
—2./G(255g70 — 69" — §7g7)d €0 = \/G(35%g° T, + 3gPTL. — 6gP°T
—20L 6T 4 PRI — gL+ gMPTE 4 g T e
~2,/9(28;9" — 879" — 679" )dy€’
= Vg(55(3g° T2, — 2g"T7 ) + 679"}, + 39" T%, — 697°T;
—gPTT, gL+ g ) — 2, /520167 — 0P g — §1g7)d, €
= Vg(8ig T2 + 67 g™ Ty, + 29T, — 59" T, + g* T )¢/
—2,/5(20%g7 — g — 31g")d, €.

Antisymmetrizing the last expression in ¢ and p, we get

%[\/5(—591’5% +5g"TT, + g T}, — g"'T},;)¢
~2,/9(2059" — 26791 — 579" + 8;971)dy€]
= VA6 T 69T )E — BYG(5Lg7 — 81) g
= 3y/g(—g"T5;& + ¢"T,87 — gP1dy€' + g"d,EP)
= 3\/9(g" (d&? +T%,87) — g"*(ds&' +T4;67))
=3G9 V&l — g7 V') = 3,/gVlier]
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Therefore we finally obtain
ve = é(g\/gv[igm — 3gROTSE + 3N Ywy,
= SVA(VIE — RETE + RYE iy = L /G(VIE — RY(E) T8y
= VAT — RYE iy

This finishes the proof.
&

Since we could add the contact part of dvg to the last term, we see that the
current can be written in the form

ir10eON = (265¢7 — Fy&i)wi + dvg +1, (4.25)

where 5} = E%g,;. The first term in (4.25) vanishes along solutions of the
Euler-Lagrange (i.e. Einstein-Yang-Mills) equations, the second term is exact,
the third term 7 is contact. For every section «y of C' we have

Ty ipce®s = [2(€) 0 JP9)E — (Fj o JPy)&|wi + dj'y ve. (4.26)
If 5 is a solution of the Euler-Lagrange equations, i.e. if £f0.J?y =0, FjoJ%y =
0, then Jl'y*ijlc§®)\ is an exact form.

Corollary 4.8. Let v be a section of C'. Then ~ is an extremal iff for every
generator of automorphisms & on P

dji*y* i 1005 =0 (4.27)
holds.

Proof: We have seen from the covariance identity (3.14) that C¢ is the gen-
erator of invariance transformations of A. If « is an extremal, we get from
Noether’s theorem that Equation (4.27) holds for every generator of automor-
phisms £ on P. Conversely, from Equation (4.25) we get for the boundary term

hdijiceOn = 2d; L7 + 281d; 67 — di Fi&) — Frdi&i)wo.

But from Equation (4.27) we see that J?y*hdijice®x = 0 holds for every
generator of automorphisms ¢ on P. This implies that Elo.J?y = 0, FjoJ?y =0,
i.e. v is an extremal.

¢

Corollary 4.8 states that for this type of invariance of the gauge natural Hilbert-
Yang-Mills Lagrangian, the differential conservation laws completely determine
the Euler-Lagrange equations.
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Examples

In this chapter we shall give some examples of the previous con-
cepts. We compute the Komar-Yang-Mills superpotential for some
solutions of the Einstein-Yang-Mills equations and we comment on
the conserved quantities (mass, electric charge, angular momentum).
It seems that the formulae, representing the most general superpo-
tentials, are new; we shall show that they include special cases which
were described in literature. The current evaluated along an extremal
can be computed directly from the principal Lepage equivalent using
the explicit formula (4.14) for the lift J'C¢ or by Equation (4.26) as
the exterior derivative of the Komar-Yang-Mills superpotential eval-
uated along a solution. This is straightforward but the result for an
arbitrary generator of automorphisms of the structure bundle is quite
long. In this chapter we use the terminology from the books [21, 56].

5.1 Levi-Civita-Bertotti-Robinson Solution

First we apply the result of the previous chapter to the Levi-Civita-Bertotti-
Robinson solution of the Einstein equations. This is one of the simplest exam-
ples. We take as the structure bundle the trivial bundle (X x U (1), pr;, X,U(1))
over the Levi-Civita-Bertotti-Robinson spacetime (X, g) (see e.g. [56] and for
some details and interpretations [14, 39]), we suppose there exist coordinates
(t,r,0,¢) on X such that the metric g is given by

2

g = S[—di? + dr® +r2(d6> + sin? 0 dig?)].
.

54
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This metric g together with the U(1)-connection !
T =—25(dt+dr)
r

is a solution of the Einstein-Maxwell equations, i.e. a solution of Equations (4.6)
corresponding to the Hilbert-Yang-Mills Lagrangian A with the only component
of the Ad-invariant form & on u(1) equal to 1. We denote this solution by v pg.

We write a generator f of automorphisms of the structure bundle in the form

(=&, +£—+£3 +§—+CR61, (5.1)
where R., denotes the right invariant vector field on U(1) corresponding to
the base vector e; in u(1). Then we get the following coordinate expression

for the pull-back J'y*v¢ of the Komar-Yang-Mills superpotential v¢ along the
solution vz, gR:

Jl'VZBRV€:<_2Ce—6 < (& +2£)—|—8£1+852>>sin9d9/\d@

0
+ aif?’_i_ii 25in@dr A do — 9544—#8& 2dr A dO
ot 2 og )¢ ST sin ot r2sinf dp e
ae3 10¢2\ , . IR SN S
+<87‘ 28)6 sinfdt A de + m% smﬂﬁ e dt N\ db
1 963 o¢t
4 A
+<2cos€§ 811198 +s 939 dt/\d

If we choose ¢ as (R.,, we get
JYiprver,, = —2Cesing df A de.

Taking ¢ as an appropriate constant and integrating on spatial spheres we obtain
the electric charge e.

5.2 Reissner-Nordstrom Solution

Now we apply the result of the previous chapter to the Reissner-Nordstrém
solution of the Einstein equations. We take as the structure bundle the triv-
ial U(1)-bundle (X x U(1),pr;,X,U(1)) over the Reissner-Nordstrom space-
time (X, g) (see e.g. [21]), we suppose there exist coordinates (¢,r,6, ) on X
such that the metric g is given by

2 2\ 1
g<12m+62)dt2+<12m+62) dr? + 1% (d6° + sin® 0 dp?) .
r r r r

IWe will not write the base vector e; in u(1) for the U(1)-connections explicitly.
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This metric g together with the U(1)-connection
e

I'=-2—(dt +dr)
T

is a solution of the Einstein-Maxwell equations. We denote this solution by ygn -

For a generator & of automorphisms of the structure bundle as in (5.1) we get
the following coordinate expression for the pull-back J'~%yve of the Komar-
Yang-Mills superpotential v¢ along the solution ygrn:

851 7,4 652
il LAY

4 9¢3 1 4 4 1 1
+sin9<r8€+a§>dr/\d<p— <r sm@(‘?i_i_ ag)dr/\d@

2
Jyhave = sin9< —2e- =~ (2&%e* +¢'e* + mr) —

s Ot 00 S ot  sinf dp
+sin9<is§3 +s%—§: — a;:)dt/\ dy
—(issin9£4 + ssin@%—g: — siiﬂgggj)dt/\dg
+<20080§4 — siiegi +sin08;:>thdr, s=r%—2mr+ €.

In particular, if we choose & as £€1(9/0t), where £! is constant, then we have
o2
Jl“YENVgl(a/at) = —2¢! <m + r) sin 6 df A dep.

Thus for an appropriate choice of the constant ¢! we obtain, after integrating
on spatial spheres at spatial infinity, the mass m.
If we choose ¢ as (R.,, we get

T hnver,, = —2Cesing df A de.

The electric charge e can be found by taking ¢ as an appropriate constant and
integrating over spatial spheres.

5.3 Kerr-Newman Solution

Now we consider the Kerr-Newman solution of the Einstein equations. We
take as the structure bundle the trivial U(1)-bundle (X x U(1),pr;, X,U(1))
over the Kerr-Newman spacetime (X, g) (see e.g. [56]), we suppose there exist
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coordinates (t,r,0,¢) on X such that the metric g is given by

2 _p2
g= —(1—$) dt2+%d7‘2+ud92+sin29(r2+a2

2 s 29 i 29
a? sin” T (2mr = )(dt  dip + dip © db),

(2mr — 62)) dp? —
s=r2+a?+e®—2mr, u=r?+a®cos?0.

This metric g together with the U(1)-connection

= 72e£(dt — asin® 0 df)

is a solution of the Einstein-Maxwell equations. We denote this solution by yx n -

The Komar-Yang-Mills superpotential v¢ along the solution yxy for the
general generator £ of automorphisms of the structure bundle (5.1) is too long.
We will consider only a few special choices of the generator. If we choose ¢ as
£1(9/0t), where €' is constant, we have

3 9
T Yienver oo = 26" mun?) [A(a® +72) df A dp — Bsin 6 cosfa’ dr A dyp
—Aadt Adf — Bacosfdt A dr],
A= —mr* + ma*cos* 0 — r3e? + 3re*a® cos? 0,

B = (2mr — e?)a® cos® 0 + 2mr® + 3 e*r?.

Thus for an appropriate choice of the constant ¢! we obtain, after integrating
on spatial spheres at spatial infinity, the mass m.
If we choose ¢ as £4(0/0¢p), where £* is constant, then we have

in 6
A7 Casin?0df A dp — Ba®sin® 0 cos 8 dr A dp

T Vi nVeroag) = 26 3
+Ddt A df — Ecotgf dt A dr),
C = a*(—mr?® 4 a®m + re?) cos* 0 + a*r(—4mr® + 5e*r? + 3a%e?) cos® §
—r3(3mrd + a®*mr 4 a?e?),
D =a%(m —7r)cos® 0 4 a*(2re* + 2mr? — a*m — 373) cos* O — 3 a’r(r*
—mr® + e2r? 4+ a%e?) cos? 0 + r3(—rt + 2mrd — e2r? + a®mr + a%e?),
E =a%cos® 0 + a*(e? + 312 — 2mr) cos® 6 — a®(3e2r? + 2mrd + a?e?
—2a*mr — 37%) cos? 0 + r?(r* + 2a%mr + 3a%e?).
Thus for an appropriate choice of the constant £* we obtain, after integrating
on spatial spheres at spatial infinity, the angular momentum ma.
If we choose € as (R.,, where ( is constant, then we get

sin 6

Jlﬁ(NVCRel = 2(Ce 2 [(—? 4 a® cos? 0)(a® + r?) dO A dyp

—a?rsinfcos@dr A dp + a(—r* + a® cos® 0) dt A df — racotg dt A dr).

Finding the electric charge e is easy now: it can be obtained by taking  as an
appropriate constant and integrating on spatial spheres at spatial infinity.
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5.4 Colored Black Hole

We take one of the simplest non-Abelian black hole solution of the Einstein-
Yang-Mills equations - one of the so called colored black holes. We take as
the structure bundle the trivial SU(2)-bundle (X x SU(2),pr;, X, SU(2)) over
the Reissner-Nordstrom-like spacetime (X, g) (see e.g. [58] and for some details
also [5, 11]), we suppose there exist coordinates (¢,r,6, ) on X such that the
metric g is given by

2 2 2 2\ —1
g=—(1-20 X gy (12 CETY g
r r2 r 72

r? (d6* + sin® 0 dp?) .

Let ep for 1 < P < 3 be a basis of the Lie algebra su(2) given by ep = 7%0’]3
with op being the Pauli matrices. Then for the structure constants we have
ch = epgr- This metric g together with the SU(2)-connection

r= (72 E(dt +dr) +2q(1 —cos0) dgp) es
r

is a solution of the Einstein-Yang-Mills equations, i.e. a solution of Equa-
tions (4.6) corresponding to the Hilbert-Yang-Mills Lagrangian A with the com-
ponents of the Ad-invariant form h on su(2) given by hpg = dpg (h is up to a
factor the Killing form of su(2)). We denote this solution by vopg-

We write a generator § of automorphisms of the structure bundle in the form

E= 5 +£—+£3 +€—+<PRQP, (5.2)

where R., denote the right invariant vector fields on SU(2) corresponding to
the base vectors ep in su(2). Then we get the following coordinate expression
for the pull-back J'~v% 5 ve of the Komar-Yang-Mills superpotential v¢ along
the solution YCBH:

Ty e = (i[{l(qQ — &% —mr) — 26%e?] + 4€%eq(1 — cos ) — 2(%e

agl 7‘4an ) r 853 51 )
—s————t sinfdf A dp + ?E—i_ﬁ sin @ dr A dp

r4sin § 9¢* 1 0¢! 2 o 08 0¢% .
_< - W+Sin0% dr N df + ;s& + s W_% sinfdt A dp

4 2
(281n954+ssm9 0¢ L af)dt/\d@
r

or  sin6 dp

4 22
+< %(51 +€2) 4 2(cos ) — 7%(1 +cos))Ed — 27%4



Chapter 5. Examples 59

3 4
751111963% +Sin9%€9>dt/\dﬁ s=1r2—2mr+e* +¢°.

It is easy to see that, similarly as before, the mass m corresponds to 9/9¢ and
the electric charge e to R.,. Moreover, if we choose & as £4(9/0¢), where ¢4
is constant, then after integrating on spatial spheres we see that eq must be a
constant.
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induced variation, 34 source, 3
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Kerr-Newman solution, 56 variational derivative, 25
Komar potential, 47 velocities of order » and dimension &,
Komar-Yang-Mills superpotential, 47 7

Lagrange function, 24
Lagrangian of order r, 24
Aut(P)-covariant, 32
gauge natural, 30
Lepage equivalent, 26
Lepage form, 26
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