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Abstract

This Ph.D. dissertation presents a 3D discrete dislocation dynamics model (DDD). The
model describes a dislocation motion in crystalline materials containing secondary pha-
ses (precipitates) at high temperatures.

The model is based upon the linear theory of elasticity, which is used to calculate
internal stress fields produced by the dislocation structure, which is represented by a set
of short straight segments. This approach simplifies the calculation of the internal stress.
Together with externally applied stresses, the internal stress gives rise to Peach-Koehler
(driving) forces, which cause the displacement of the dislocations. The equations of
the dislocation velocity account for the crystallography of the material. The model also
comprehends an interaction between dislocations and incoherent rigid spherical precip-
itates.

The work briefly reviews mechanisms of high temperature plasticity and the role of
crystal defects during plastic deformation. Further is discussed the knowledge of the
theory of elasticity and the theory of dislocations necessary for the introduction of the
3D DDD model. The description of the model includes several techniques for time inte-
gration, relations between the driving forces and dislocation velocities, dynamic adjust-
ment of the discretisation, discrete representation of the annihilation of smooth dislo-
cation curves and symmetry optimizations. The function of the model is demonstrated
on several benchmark systems: dislocation loop contraction and expansion with pre-
cipitates (2D), Frank-Read dislocation source (2D) and a contracting or expanding set of
coaxial dislocation loops in a field of precipitates (3D).

Finally, the 3D DDD model is used to study an evolution of a low-angle tilt bound-
ary (LATB) and its interaction with a field of rigid spherical precipitates under the action
of applied shear stress. The simulation is carried out with different velocity equations
and the results are compared. The results suggest that the motion of the LATB may be
completely stopped by the precipitates, which thus strengthen the material. Further a
parametric study is calculated to determine the critical applied shear stress necessary
for the LATB to pass through the precipitate field. The calculation is done for varying
misorientation angles of the LATB and also for a wide range of applied shear stresses.
The results suggest that the critical applied shear stress is approximately inverse pro-
portional to initial line spacing in the LATB, i.e. it is proportional to the misorientation
angle. The resulting critical applied shear stress is also several times lower than the
Orowan stress for matching particle diameters and interparticle spacings.

The results of the 3D DDD study of the LATB are compared with available results
from creep tests of precipitate strengthened alloys. These experiments indicate existence
of critical stresses of comparable magnitude for corresponding misorientation angles.
Also the critical stresses obtained from the experiments are significantly lower than ap-
propriate Orowan stress.





Abstrakt

Tato disertační práce popisuje 3D model diskrétní dislokační dynamiky (DDD). Model
popisuje pohyb dislokací za vysokých teplot v krystalických materiálech obsahujících
sekundární fáze (precipitáty).

Model je založen na lineární teorii elasticity, jež umožňuje vypočítat vnitřní napět’ová
pole vytvořená dislokační strukturou vyjádřenou pomocí souboru krátkých úseček. Ten-
to postup zjednodušuje výpočet vnitřního napětí. Vnitřní a vnější aplikovaná napětí
vyvolávají hnací (Peach-Koehlerovy) síly, které zapříčiňují pohyb dislokací. Rovnice
popisující rychlost dislokací zahrnují krystalografii materiálu. Součástí modelu je též
působení mezi dislokacemi a nekoherentními tuhými kulovými precipitáty.

Práce ve stručnosti shrnuje mechanismy vysokoteplotní deformace a úlohu krys-
talových poruch při plastické deformaci. Dále jsou rozebrány poznatky z teorie elas-
ticity a teorie dislokací potřebné k zavedení 3D modelu DDD. Popis modelu zahrnuje
různé způsoby časové integrace, vztahy mezi hnacími silami a rychlostmi dislokací,
průběžnou úpravu diskretizace, diskrétní vyjádření anihilace hladkých dislokačních
křivek a optimalizace založené na souměrnosti. Činnost modelu je předvedena na něko-
lika zkušebních soustavách: smršt’ující se a rozpínající se dislokační smyčka s precipi-
táty (2D), Frankův-Readův zdroj dislokací (2D) a smršt’ující se či rozpínající se řada
souosých dislokačních smyček v poli precipitátů (3D).

Nakonec je s využitím 3D modelu DDD zkoumán vývoj maloúhlové sklonové hra-
nice a její interakce s polem tuhých kulových precipitátů při aplikaci smykového napětí.
Simulace je provedena s různými rovnicemi pro rychlost dislokací, jednotlivé výsledky
jsou porovnány. Výsledky ukazují, že pohyb hranice mohou precipitáty zcela zastavit,
čímž zpevňují materiál. Dále byla provedena parametrická studie určující kritické ap-
likované smykové napětí potřebné k tomu, aby hranice překonala pole precipitátů. Vý-
počet je proveden pro různé misorientační úhly sklonové hranice, jakož i pro široké
rozpětí aplikovaných smykových napětí. Výsledky ukazují, že kritické aplikované smy-
kové napětí je nepřímo úměrné počátečním rozestupům mezi dislokacemi tvořícími
hranici, tj. je úměrné úhlu misorientace. Výsledné kritické aplikované smykové napětí
je rovněž několikrát nižší než Orowanovo napětí odpovídající zvolené velikosti precipi-
tátů a jejich rozestupům.

Výsledky 3D DDD studie maloúhlové sklonové hranice jsou porovnány s dostup-
nými výsledky creepových zkoušek precipitačně zpevněných slitin. Tyto zkoušky vy-
kazují kritické napětí obdobné velikosti při obdobných úhlech misorientace. Rovněž
kritické napětí při zkouškách je podstatně nižší než odpovídající Orowanovo napětí.
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I. INTRODUCTION

Many materials with a potential for industrial applications have a crystalline structure
and most of them are metals and their alloys. A research focused on a relation between
material structure and properties is very important for contemporary industry. A partic-
ularly important field of the materials science is an investigation of material behaviour at
extreme conditions, such as mechanical loadings at high temperatures. These conditions
activate high temperature plastic deformation, e.g. creep [1, 2], which is one of the im-
portant processes with a great impact on the lifetime of industrial structures. The creep
behaviour of various metallic materials is thus being investigated over decades [3–5].

Plastic deformations of metals have been studied since the 19th century [6]. Many of
their properties were not understood, such as a critical strength of a perfect crystal [6].
A concept of dislocations explained a discrepancy between a theoretical prediction of
critical shear stresses and experimental measurements. Among other crystal imperfec-
tions, the dislocations are known to be responsible for many aspects of plastic defor-
mation [1, 6]. With the progress of computer technology in last decades, the research
in materials science is supported also by numerical calculations like discrete dislocation
dynamics (DDD), which is a central topic of this work.

I.1 High temperature deformation

A solid responses to an externally applied force by its deformation. The deformation can
be elastic, anelastic or plastic. The elastic deformation is reversible and does not depend
on time. It is described by a linear theory of elasticity [7, 8]. The anelastic deformation
is also reversible, but time-dependent [1]. Finally, the plastic deformation is irreversible
and generally depends on time. The plastic deformation can be decomposed into a time-
independent part and a time-dependent part, which is creep [1, 2].

The deformation can be recorded during a high temperature loading. A plot of the
deformation vs. time for a creep process is known as a creep curve. A schematic creep
curve is shown in Fig. I.1. The first part of creep deformation is a primary creep. The
strain rate decreases during the primary creep, until it approaches a constant value. For
low homologous temperatures1, only the primary creep occurs. Higher homologous
temperatures activate recovery processes which relax the strain hardening and help es-
tablishing the secondary creep. The secondary creep features a constant strain rate, so
the creep curve is linear. Finally, a tertiary creep may follow, which exhibits an increase
of strain rate with time. This may be caused by an increase of the applied stress or by
changes in the material structure. The tertiary creep is terminated by a fracture of the
material [1, 2].

In a typical creep experiment, a specimen is inserted in a creep machine, which may
be pulling or compressing the gauge length region of the specimen. The test is per-
formed at constant temperature. The specimen loading regime may be either the con-
stant load (i. e. the force acting upon the specimen is constant), or the constant applied
stress (σ = const.) when the acting force changes according to the changing specimen

1 A homologous temperature T/Tm is a ratio of a thermodynamic temperature T and a temperature of
melting Tm.
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I.1. High temperature deformation
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Figure I.1: A schematic creep curve represented as strain vs. time plot, see also [1].

cross-section. The deformation of the specimen is recorded during the test. As an exam-
ple, results of a creep test of an austenitic steel 16Cr− 12Ni− 2.5Mo at a temperature
T = 873 K are presented in Fig. I.2.

As the cross-section of the specimen decreases, a constant load applied upon the
sample raises the stress, which leads to an increase of the strain rate, and finally to a
crack of the material. On the other hand, a test with a constant stress may take very long
time till fracture (see Fig. I.2 – curve b).

I.1.1 Microstructural mechanisms

The rate of high temperature deformation is strongly sensitive to temperature. One of
the most important mechanisms involved in plastic deformation is a motion of dislo-
cations. A thermal activation of dislocation motion can be represented using a frame-
work of the rate of chemical reactions, so a similar thermodynamic description can be
adopted [9, 10]. The dislocation motion is impeded by obstacles, which either produce
a long-range stress field, such as other dislocations, precipitates etc., or produce a short-
range stress field. A critical stress σcrit. needed to move the dislocations during the plas-
tic deformation can be decomposed into a long-range part σLR and a short-range part
σSR:

σcrit. = σLR + σSR. (I.1)

While the long-range contribution σLR does not much depend on the temperature (con-
sidering that e.g. the shear modulus µ is just slightly temperature dependent) [11], the
short-range interaction between dislocations and obstacles located in the slip plane char-
acterized by σSR may be influenced by a lattice thermal energy [12,13]. If there is enough
energy from a local thermal fluctuation, the local stress supported by the thermal activa-
tion may release a dislocation segment from local obstacles [14, 15]. Calculations based

6
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Figure I.2: A comparison of creep curves of an austenitic steel 16Cr− 12Ni− 2.5Mo at a
temperature T = 873 K for a) a constant loading with initial stress σa = 200 MPa and b)
for a constant stress σ = σa. The plot comes from [1].

on thermodynamics suggest that the local stress field contributing to the release of the
dislocation segment comes only from a portion of the externally applied stress – an ef-
fective stress σ∗, whereas the rest of the applied stress counterbalances the local stresses
originating outside of the subsystem formed by the dislocation segment and a short-
range obstacle. This part of the applied stress has been called internal stress σi by Seeger
et al. [9]. The linear elasticity allows to sum all long-range stress fields (from other dislo-
cations, coherent particles etc. [10]) and thus get internal stress at a certain position in the
microstructure. Apart from the internal and effective stress, the analysis of a thermally
activated dislocation motion gave rise to other thermodynamic and kinetic quantities
of the process, i.e. the activation volume V∗, the energy barrier ∆G0 connected with the
short-range obstacle at zero effective stress and the mobile dislocation density ρm [14].

The mobility of dislocations may also depend on processes modifying a dislocation
core [16, 17]. Some crystalline materials thus show a non-monotonous dependence of
the flow stress on temperature for homologous temperatures from 0.3 to 0.5 [18]. A
very weak temperature dependence of the flow stress leads to an athermal flow [18],
which may be explained by the temperature dependence of the elastic constants. This is
either due to the complicated structure of the dislocation core, which can split into non-
planar configurations [17], or due to the short-range diffusion enriching the dislocation
core by impurity atoms, which markedly change the dislocation mobility [19, 20]. A
bulk diffusion controls processes that dominate at homologous temperatures above 0.4,
where the high temperature creep sets in [1]. A vacancy diffusion, which controls the
dislocation climb, can result in a recovery and annihilation of dislocations fast enough to
balance hardening processes. This balance may result in a steady rate of the macroscopic
deformation [1]. The internal stress distribution during the steady state creep has been
discussed thoroughly in the literature (e. g. [1]).

7



I.1. High temperature deformation

I.1.2 Phenomenological description

The strain rate during the creep deformation is a function of temperature T and the
applied stress σ [1, 2, 11].

ε̇ = f (σ, T). (I.2)

The experiments suggest, that the minimum strain rate ε̇min, which corresponds to the
secondary creep stage [1], may be approximated by a Norton’s law [2, 21]:

ε̇min = B(T)σn, (I.3)

where B(T) is a temperature-dependent parameter and n is a stress exponent. Parame-
ters B and n are material characteristics.

The influence of the temperature on the creep process is very strong. The creep rate
and its dependence on temperature can be described by the Arrhenius law [1]:

ε̇ = ε̇0 exp
(

−Qc

RT

)

, (I.4)

where ε̇0 is a frequency factor, Qc is the apparent activation energy of creep and R is a gas
constant. To fulfil both equations (I.3) and (I.4), the prefactor B(T) must be determined
by the exponential function of the creep activation energy and the temperature:

B(T) = B0 exp
(

−Qc

RT

)

. (I.5)

I.1.3 Sensitivity to the applied stress

According to [1], we may introduce the sensitivity parameter of the creep rate to the
applied stress (stress sensitivity parameter) as:

n =
∂ log ε̇min

∂ log σ

∣
∣
∣
∣
T

. (I.6)

For a case of a diffusion creep of pure metals, the stress exponent is n = 1, whereas for
the dislocation creep of pure metals and class II alloys is n = 5 [1, 2]. The class I alloys
usually exhibit n = 3 [2, 22]. On the other hand, precipitation strengthened alloys, such
as Ni− 20Cr− 2ThO2 [4], may be characterised by much higher value of the sensitivity
parameter (n > 10, or even n > 20). The experimental results suggest, that there is a
threshold stress σt, which has to be exceeded to activate the creep process in certain type
of particle strengthened materials. As indicated by TEM micrographs [3], the precipi-
tates are holding the dislocations and preventing them from further propagation. The
dislocations are thus driven by an effective force proportional to σ− σt [4], which is very
low just above the threshold stress. This causes the high values of the stress sensitivity
parameter n.

I.1.4 Activation processes

As it was already mentioned in the section I.1.1, the local obstacles are overcome with a
help of a thermal energy. This is called a thermally activated motion of dislocations, which,
under certain circumstances, may control the whole deformation process [11]. A typical
set of elementary deformation processes than can be thermally activated consists of:
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Chapter I: Introduction

1. Intersecting the dislocation forest. Dislocations intersecting the active slip plane are
called a dislocation forest. The activation volume depends on the density of the
dislocation forest. Increasing the dislocation forest density increases the σSR and
decreases the activation volume.

2. An interaction between dislocations and point defects. The activation volume depends
on the concentration of point defects (including the impurity atoms).

3. Climbing of edge dislocations. The activation volume is approximately b3 (b is the
length of the Burgers vector, see sections I.2 and IV.1) and the activation energy is
determined by the activation energy of self-diffusion.

4. A cross-slip of screw dislocations.

5. Overcoming the Peirls-Nabarro stress.

6. Non-conservative motion of screw dislocations with jogs.

I.2 Crystal defects

Most crystalline materials are not perfect single crystals, neither are they polycrystals
consisting of perfect single crystalline grains. The crystal lattice in vast majority of cases
contains many different defects. These defects have a considerable impact on various
properties of the material, such as the thermal and electric conductivity or mechanical
properties. Depending on the dimension, the crystal defects can be divided into four
categories: point, line, planar and bulk defects. The defects are thoroughly described in
the literature [11, 23], here only a short overview is presented.

I.2.1 Point defects

Several examples of point defects in a simple cubic lattice are displayed in a 2D projec-
tion in Fig. I.3. The lattice site may be unoccupied (vacancy – Fig. I.3a) or occupied by
an impurity atom (substitution – Fig. I.3c). If there is an atom outside of a lattice site, it
is an interstitial (Fig. I.3b), or, in a case of an impurity atom, an interstitial impurity (Fig.
I.3d). A more complex types are formed by the combinations of the former, such as a
Frenkel pair (vacancy + interstitial, Fig. I.3e), vacancy + substitution with impurity atom
(Fig. I.3f) or multiple adjacent vacancies (not displayed).

The impurity atoms occupy a different volume than the atoms of the host crystal
lattice, which leads to interaction with dislocations by a local modulation of stress field
(section I.3.1). The interstitials and vacancies also take part in diffusion, especially at
elevated temperatures (sections I.3.4 and IV.5).

I.2.2 Line defects

The most important line defects are dislocations. This means that the crystal lattice is
misaligned along a continuous line within a short distance (up to several interatomic
distances). On the other hand, the dislocation length may even be comparable to the
size of the crystal.

An example of a dislocation is in Fig. I.4. The Fig. I.4a shows a cut through simple
cubic lattice without any defect, which is represented by a perfect 2D lattice. If there is a
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I.2. Crystal defects

a) b) c)

d) e) f)

Figure I.3: Point defects in a simple cubic lattice: a) vacancy, b) interstitial, c) substitution
impurity atom, d) interstitial impurity, e) Frenkel pair, f) vacancy + impurity.

half plane inserted to or removed from the crystal, the local lattice structure substantially
changes. Near the edge of the plane, the crystal lattice is strongly misaligned. In the
upper region, where the plane is inserted, the atoms are compressed to each other, while
in the lower region the atoms move apart from each other. This kind of defect is called an
edge dislocation, which is actually the edge of the half plane inserted into the crystal. The
edge dislocation is schematically depicted as a T-like symbol: ⊥⊤ ⊢ ⊣, where the T stem
denotes the inserted plane and the T bar the glide plane. To characterize a dislocation,
we introduce two parameters, the Burgers vector b and a unit vector ξ, which, in a given
point, is tangential to the dislocation line. In Fig. I.4, we choose the direction vector ξ

along the Z axis (pointing into the paper).

In order to define the Burgers vector, we start with a crystal containing an edge dis-
location (Fig. I.5a). We take a circuit about the edge dislocation in a right hand sense,
the thumb points in the dislocation direction vector ξ and the fingers show the circuit
orientation. We start at the position S and proceed through the positions 1, 2 and 3 to the
final position F, which, in the deformed crystal, coincides with the starting position S. If
we take the circuit only through the lattice sites, we can represent the circuit S123F as a
sequence of steps: ↑↑↑↑→→→→↓↓↓↓←←←. Now we follow these steps in the perfect
lattice of the same crystal (Fig. I.5b). As we can see, the circuit does not close, as the
points F and S do not overlap. In order to close the circuit, we need additional step← –
the true Burgers vector b pointing from the endpoint point F to the starting point S. This
definition of the Burgers vector is called finish-start right-hand convention (FS/RH) [6].
This definition of b is adopted throughout this thesis. In the literature, sometimes, a dif-
ferent definition is used, where the Burgers vector points from S to F, from the start to
finish (SF/RH), which obviously results in an opposite direction of the Burgers vector.
From the FS/RH definition also follows, that the choice of the direction of the vector ξ

10
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a) b)

X

Y

Z

Figure I.4: A cut through a simple cubic lattice: a) without any defect, b) with an edge
dislocation.

a) b)

X

Y

Z

S SF F

1 12 2

3 3

b

Figure I.5: Definition of the true Burgers vector (FS/RH convention).

determines the circuit sense. An inversion of ξ thus inverts also the Burgers vector b.
A complementary type of dislocation is a screw dislocation. In the case of screw

dislocation, there is no inserted plane in the crystal, instead, the crystal is cut a half
way through by a plane and sheared parallel to the cut edge by at least one atomic
distance. The situation is depicted in Fig. I.6. Again, the dislocation direction is along
the Z axis. If we apply the FS/RH scheme, we get a circuit S12345F, whose steps are
↓←←←↑↑→→→↓ ⊙. Again, if we undergo the same steps in a perfect crystal, the
circuit will be closed by adding one more step ⊗. The Burgers vector b has a positive
Z direction, which is the same direction as the dislocation line direction ξ. The screw
dislocations are depicted by symbols ⊙ or ⊗.

The edge dislocations thus have the Burgers vector perpendicular to their direction
(b ⊥ ξ), whereas the screw dislocations have the Burgers vector parallel to their direc-
tion (b ‖ ξ). There are also dislocations with a mixed character, which have an edge
component and a screw component and the angle between the b and ξ vectors falls into
a range (0, π/2).

The dislocations are very important for explaining the material properties of crys-
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X

Y

Z

b

12

3
4

5

S, F

Figure I.6: A simple cubic crystal with a screw dislocation.

talline materials [6]. For example, the theoretical shear stress necessary to initiate plastic
flow in the crystal was estimated as

σtheor. =
µb

2πd
≃ µ

5
, (I.7)

where b = |b| is the magnitude of the Burgers vector and d is the interplanar spac-
ing [6]. However, the experimentally obtained values were from a range from 10−4 to
10−5µ for many materials (the µ denotes a shear modulus). While the theoretical val-
ues correspond to experimental results obtained for perfect whisker crystals, the results
for other materials were finally explained by the dislocation motion [6]. The disloca-
tions can move due to driving forces coming from the stress field in the material. The
stress field generally consists of a contribution from the dislocation itself and from other
sources external to the dislocation, like other dislocations in the crystal and an external
stress applied on the material.

I.2.3 Planar defects

The planar defects are grain and subgrain boundaries. A special case of the latter is a
low angle dislocation boundary (LADB), which we will discuss at first.

Low-angle dislocation boundary

A LADB separates two regions of a material, a crystal lattices of which are only slightly
misoriented. The slight misorientation is formed by a row of dislocations forming to-
gether a wall structure. An example of such structure is in Fig. I.7a, which depicts a
tilt boundary, consisting of edge dislocations. In both regions adjacent to the boundary,
the crystal lattice is tilted by angle Θ/2. This angle Θ can be estimated by a ratio of the
length of the Burgers vector b and the inter-dislocation distance h:

b
h
= 2 sin

Θ

2
≈ Θ. (I.8)
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Chapter I: Introduction

These LADBs were experimentally observed in many materials including precipi-
tation hardened alloys [3, 24]. The low-angle dislocation boundaries migrate during a
high temperature loading [25].

If the two subgrains are twisted with respect to each other, the dislocations forming
the boundary are of a screw character and form a twist boundary. This structure has also
been described in literature [11].

Grain boundary

If the misorientation between the two adjacent crystal lattices is above approx. 20 to 25◦,
the overall structure is far from a perfect crystal and a description different from discrete
dislocations must be adopted for its characterization [6]. Methods based on coincidence
site lattices model are applied [11]. An example of such structure is shown in Fig. I.7b.

a) b)

Figure I.7: Tilt boundaries with misorientation angle approx. a) 11.5◦ and b) 23◦.

I.2.4 Bulk defects

An example of such a defect is a large cluster (relative to the atomic scale, i.e. micro-
scopic) of vacancies, which is called a void. Another case is a precipitate or particle of
secondary phase, which differs by its structure and chemical composition from the rest of
the bulk material. It can be described as a large cluster of impurity atoms.
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I.3 Dislocation structures at high temperatures

The dislocation structures in alloys and composite materials subjected to loadings at
high temperatures undergo complex interactions with impurity atoms, grain bound-
aries and secondary phases. These interactions have a considerable impact on the high
temperature strength of the material.

I.3.1 Impurity atoms

Impurity atoms (solute) may have a different size than the atoms forming the primary
phase (solvent). In the case of edge dislocations, the crystal lattice near the dislocation
consists of a compressed region (where an extra half-plane of atoms is inserted) and a
dilated region (under the inserted half-plane). Depending on the atomic radius, the im-
purity atoms may diffuse into the compressed (for smaller atoms) or dilated (for larger
atoms) regions.

Even the impurity atoms having the same size as the atoms of the solvent phase
affect the dislocations. These atoms may have stronger or weaker chemical bonds with
the neighbouring atoms, making thus the crystal locally harder or softer. These local
variations of mechanic properties affect the dislocation interactions, specially the forces
needed for dislocations to pass through the affected region [11].

I.3.2 Grain hardening

The material strength depends also on the grain size. In contrast to monocrystals, the
motion of dislocations in polycrystals is considerably limited by grain boundaries. A
boundary between two grains with almost the same orientation (misorientation about
1◦) is formed by a dislocation wall consisting of a row of dislocations. Higher misori-
entation angles lead to a considerably different boundary structure; the grain boundary
is then formed by several atomic layers exhibiting less regular distribution of atoms. In
both cases, the boundary is an obstacle for the moving dislocations, which may form
pileups at the boundaries.

The study performed with bicrystals showed that the grain boundary orientation
strongly influences the flow stress [11]. For a boundary orientation parallel to the load-
ing direction, the flow stress is determined by the grain misorientation. Particularly,
greater misorientation angles increase the flow stress [11].

In polycrystals with grain boundaries perpendicular to the loading direction, the
deformation starts in grains with the most suitable orientation of the slip systems with
respect to the loading direction, but the dislocation activity is not observed near the
grain boundaries [11].

The macroscopic plastic deformation of a polycrystalline material starts only when
the dislocation pileups at a grain boundary activate dislocation sources in the neigh-
bouring grains by their stress fields. [11].

I.3.3 Precipitation hardening

An addition of impurity atoms generally increases the flow stress. Moreover, in a su-
persaturated solid solution precipitation of secondary phases may occur. Depending on
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the lattice parameters of the precipitate and the matrix, the precipitates may be coherent,
semicoherent or incoherent.

The coherent precipitates increase the flow stress due to a) exertion of forces caused
by a lattice constant difference, b) formation of an antiphase boundary, c) a difference
between stacking fault energies in the precipitate and in the matrix, d) an increase of the
surface of the precipitate after being cut by a migrating dislocation.

If the coherent precipitates make the flow stress too high, or if the precipitates are
incoherent, the dislocations cannot pass through the particle volume. However, a fur-
ther motion of the dislocations is possible due to an Orowan mechanism and climb past
particles [26, 27]. The dislocations are initially pinned by the precipitates and bow out
between the precipitates due to the applied stress. The rising curvature in the bow-
out produces a stress with an opposite sign. If the applied loading is high enough, the
bow-out may grow up to a critical configuration from which on the bow out proceeds
by self-expansion. This process allows the side sections of the dislocation to annihilate,
leaving a dislocation loop on the precipitate. This is called the Orowan mechanism and it
is analogous to the mechanism of the Frank-Read source [11]. The critical stress neces-
sary to overcome the precipitates depends on the distance between the particle centres
λ and the particle diameter d

σOrowan = Γ
µb

λ− d
, (I.9)

where the factor Γ is either predicted by a model (Γ = ln(d/R0)/(2π) for edge disloca-
tions, Γ = ln(d/R0)/[2π(1− ν)] for screw dislocations, [11]) or fitted from experimental
data (Γ = 0.8, [28]).

I.3.4 Dynamic recovery

Dynamic recovery is a process, which compensates the strain hardening of the material,
especially the increase of the dislocation density. If dislocations are produced by Frank-
Read-type sources, the edge components of the loops, which originally move in distinct
slip planes, undergo a diffusion controlled climb, which allows them to propagate into
different slip planes. Dislocations of an opposite sign may thus climb to a common
slip plane and annihilate. This process decreases the dislocation density. The screw
components can move to a common slip plane either by a thermally activated cross-
slip, or by a conservative motion of the dislocation jogs formed by climbing of the edge
components of the loop [1].

Thus the dislocation density can reach a steady value given by an equilibrium be-
tween the generation and annihilation of dislocations. A consequence of the steady dis-
location density is a steady deformation regime observed during the secondary creep,
which exhibits a linear increase of the strain with time (Fig. I.1).

I.3.5 Formation of a dynamic equilibrium structure

The dislocations in an annealed crystal form mostly a 3D Frank network and partially
also 2D networks consisting of low-angle dislocation boundaries. In the 3D networks,
dislocations are connected in junctions – dislocation nodes. The stability condition of a
node is that the sum of Burgers vectors of dislocations coming to and out of the junction
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is zero. The condition allowing a formation of low-angle boundaries is a local outbal-
ance of dislocations of one sign. The low-angle boundaries can be either tilt boundaries
formed by climb and glide of edge dislocations or twist boundaries, which are formed
by a glide of two systems of screw dislocations [1].

In annealed polycrystals, the dislocation structure is influenced also by the grain size
and grain orientation. A multiaxial stress state in one particular grain may promote the
activity of more slip systems. In some alloys the 2D networks may not be present at
all, if there is a low stacking fault energy, which hinders the dislocation climb and cross
slip [1].

The dislocation system formed immediately after an application of external stress
usually has a cell structure, even after a deformation at room temperatures.

At the beginning of the primary creep, the dislocation structure becomes more het-
erogenous and the subgrains are gradually formed (in class II materials mainly). At the
beginning of the secondary creep, the structure is partially homogenized and the mean
subgrain size and the subgrain misorientation do not change much during subsequent
stages of creep [1].

The development of the dislocation structure during primary creep is strongly de-
pendent on the stacking fault energy. The system of subgrain boundaries weakens with
lower stacking fault energies and may completely disappear. The subgrain structure is
not preferred in class I materials.

Initially, during the primary creep with a high creep rate, deformation and kink
bands are created, at whose the tilt boundaries are forming. Pure tilt boundaries are
perpendicular to the slip plane and also the slip direction. Also twist boundaries are
formed. These are formed by coplanar systems of screw dislocations and are parallel to
their slip plane.

The heterogenous structure produced during the primary creep consists of small par-
allel subgrains and also large subgrains. During the ongoing deformation, the smaller
subgrains are growing and the larger subgrains are shrinking. These processes make the
structure more homogeneous. As the smaller subgrains are merging, the boundaries are
either decomposed, or these can join after encountering each other. Free dislocations,
which are not a part of any of the dislocation boundaries, remain in a 3D network even
during the stationary creep.

The organisation of the cell structure formed by dislocation boundaries has been
studied by Holt [29]. According to his work, the homogeneous distribution of screw
dislocations is unstable, as the elastic energy of such configuration is high. This allows
the dislocation structure to be rearranged to an inhomogeneous modulated distribution
with a wavelength equal to the mean subgrain size.

The formation of the cell structure affects also the free dislocation density (i.e. the
density of the dislocations not lying in the subgrain boundaries). Initially, the dislo-
cation density quickly increases with the onset of the primary creep. However, these
dislocations readily form the subgrain boundaries. This process leads to a decrease of
the density of free dislocations. On the other hand, the total dislocation density grows
monotonically up to the stationary creep regime [1]. Experimental data on the evolution
of dislocation densities with creep strain for α − Fe creep tested at temperature 873 K
and applied stress 75 MPa are shown in Fig. I.8.
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Figure I.8: Change of total dislocation density ρt, density of free dislocations ρ and dis-
locations inside the subgrain boundaries ρB with the creep strain ε for α − Fe crept at
873 K and 75 MPa. The plot is taken from [1].

I.4 Discrete dislocation dynamics

The discrete dislocation dynamics (DDD) is a method designed to investigate evolution
of dislocation structures using numerical simulations. This method addresses a collec-
tive motion of many dislocations. The DDD simulations mimic fairly well real processes
in crystalline materials [30–42]. The spatial scale of the simulation is on the order of mi-
crons (the grain size). The time scale usually covers the range of seconds (like in the
in-situ TEM experiments) or minutes (fast creep tests).

Like in the in-situ TEM experiments, the simulation focuses on individual disloca-
tions, whose response to the stress and temperature conditions in the material is stud-
ied. Apart from real experiments, the simulation offers a fine control of the simulation
conditions (temperature, applied stress) and the material properties (elastic moduli,
crystallography, initial dislocation structure). A realistic DDD model is thus expected
to provide an important insight into the fundamental processes concerning the crystal
plasticity, especially at high temperatures.

The DDD methods are targeted at dislocation systems consisting of individual dislo-
cation lines, where every dislocation line does interact with each other. A driving force
for dislocation motion is described by Peach-Koehler (P-K) force [6]. The DDD methods
can be roughly divided according to the representation of the dislocation structure.

I.4.1 2D DDD methods

The two-dimensional methods are focused on a special case, where the dislocation struc-
ture consists only of straight dislocations of infinite length. The real 3D system can
thus be represented by a 2D plane, where the dislocations are represented with their
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intersections with the plane. The models consider usually both the conservative (glide)
and non-conservative (climb) motion, allowing thus to cover thermally activated pro-
cesses including diffusion, which control deformation at high temperatures (section I.3).
Some models also include interactions with secondary phases (precipitates) of various
shapes [43, 44].

Although such models do not use a realistic representation of the dislocation struc-
ture, they have provided valuable results concerning e.g. the particle strengthening of
a composite material [43, 44]. The major advantage of such models is a straightforward
calculation of the dislocation-dislocation interaction, which simplifies the numerical im-
plementation and increases the computational speed.

I.4.2 3D DDD methods

I.4.3 Segment representation

A realistic representation of the dislocation structure requires a 3D approach. Dislo-
cations with arbitrary shapes may be incorporated into a 3D model. The dislocation
lines are usually represented by discrete short straight segments. The piece-wise dis-
cretisation either follows the smooth and continuous dislocation lines with segments
of suitable, but unconstrained direction [30, 34, 39, 45], where the segments may have a
mixed, edge and screw character (Fig. I.9a), or uses pure edge and straight segments
(Fig. I.9b) [33, 46–48]. It is also possible to use curved segments represented by, e.g,
cubic or quintic splines, but this approach is not very common (see e.g. a parametric
dislocation dynamics work by Ghoniem [49, 50]).

a) b)

b

screw mixed

edge

b

screw

edge

Figure I.9: A smooth elliptic dislocation loop (dashed line) in two distinct straight seg-
ment representations (solid line): a) arbitrary polygon with segments of a mixed char-
acter, b) pure edge and screw segments only.

The approach of straight segments with arbitrary direction will be further worked on
in this thesis. As can be seen from the Fig. I.9, this representation offers a better approx-
imation for a curved dislocation line with a given number of segments. This specially
applies to (even straight) lines of a mixed character, where the pure edge and screw seg-
ment approach would need an excessive number of segments for a fine representation
of the line.
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I.4.4 Models with and without climb

The 3D DDD methods bring a more complex representation of the dislocation system. In
some models, the dislocation mobility is constrained to a particular slip system, allow-
ing thus only a conservative motion of the dislocations [30,48]. This approach is justified
for low temperature processes, where the diffusion does not significantly contribute to
the dislocation motion. On the other hand, the models based on common segments,
which take the diffusion into account, are only two-dimensional. One example of a 3D
DDD model with diffusion is an extension of an existing 3D model with the pure edge
and screw segment representation [33] by Mordehai [51].

19



I.4. Discrete dislocation dynamics

20



II. OBJECTIVES OF THE WORK

The present work addresses evolution of dislocation structures at high temperatures
in crystals strengthened by secondary phases. The evolution is to be approximated by
discrete dislocation dynamics using a 3D representation of the system. The aim of the
work is to construct a numerical model able to simulate collective motion of dislocations
in crystalline materials at high temperatures.

The model should implement following features:
• The dislocation structure should be represented by short straight segments, which

form polygonal chains representing the individual dislocation lines.

• The calculation of the stress field in the dislocation structure should be based upon
the linear theory of elasticity.

• The dislocation motion should include conservative motion – glide in crystallo-
graphic slip planes, non-compact glide and non-conservative motion – diffusion-
controlled climb.

• The model should address geometrical constraint imposed on dislocation motion
by rigid precipitates of secondary phases.

The model should be applied to following situations:
• Evolution of planar systems – dislocation loops, Frank-Read sources.

• Evolution of 3D benchmark systems – coaxial dislocation loops.

• Motion of a low-angle dislocation boundary (LADB) under an applied stress.

• Quantitative analysis of plastic deformation associated with the motion of the
LADB.
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III. SELECTED CHAPTERS OF

THE THEORY OF ELASTICITY

III.1 The strain tensor

If a solid body, which is considered as a continuum, undergoes a deformation, the vol-
ume and the shape of the body changes. The deformation can be described in the fol-
lowing way. If a point r = (x1, x2, x3) is displaced during the deformation to a position
r′ = (x′1, x′2, x′3), the distance between the positions is described by the displacement u:

u = r′ − r, ui = x′i − xi. (III.1)

The distances between the points in the body change during the deformation. If we
consider two points in an infinite distance dxi, the change of their distance during the
deformation is described by a vector dx′i = dxi + dui. The distance is dl2 = ∑

3
i=1 dx2

i
and changes to dl′2 = ∑

3
i=1 dx′2i = ∑

3
i=1(dxi + dui)

2. Rewriting dui = (∂ui/∂xj)dxj

gives1

dl′2 = dl2 + 2
∂ui

∂xj
dxidxj +

∂ui

∂xj

∂ui

∂xk
dxjdxk = dl2 +

(

∂ui

∂xj
+

∂uj

∂xi
+

∂uk

∂xj

∂uk

∂xi

)

dxidxj.

(III.2)
If we introduce a tensor εij defined as

εij =
1
2

(

∂ui

∂xj
+

∂uj

∂xi
+

∂uk

∂xi

∂uk

∂xj

)

, (III.3)

we may rewrite the equation (III.2) as

dl′2 = dl2 + 2εijdxidxj. (III.4)

The εij is a strain tensor, which is symmetric by definition (εij = ε ji). For the further
discussion we assume that the deformation is small, and we keep only the first-order
terms in (III.2), so we get

εij =
1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

. (III.5)

III.2 The stress tensor

When external forces are applied upon a solid body, the body is deformed, which in-
duces not only strain but also internal stresses in the body. Let us consider a force f per

1Unless specified otherwise, repeated indices in the formulas mean a summation, so we write dui =

∑
3
j=1(∂ui/∂xj)dxj = (∂ui/∂xj)dxj.
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unit volume in the body. The total force acting upon a volume V is determined by a
volume integral

∫
f dV.

The force f = ( f1, f2, f3) per unit volume fulfils a relation of force equilibrium

fi =
∂σij

∂xj
. (III.6)

The force acting upon a volume V closed by surface A is

∫

V
fi dV =

∫

V

∂σij

∂xj
dV =

∮

A
σij dAj, (III.7)

where dAj is an area of the surface element multiplied by a local normal vector to the
surface.

III.2.1 The thermodynamics of the deformation

Now we focus on the work per unit volume δw = fiδui done by the body forces per unit
volume fi, when the displacement ui changes by δui:

∫

V
δw dV =

∫

V

∂σij

∂xj
δui dV =

∫

V

[

∂(σijδui)

∂xj
− σij

∂δui

∂xj

]

dV =
∮

S
σijδuidAj −

∫

V
σij

∂δui

∂xj
dV.

(III.8)
The formula (III.8) is modified by the integration by parts and the Stokes’ theorem. If
we extend the integration surface to infinity, there is no deformation on the surface.
Thus the first integral in (III.8) vanishes. As the stress tensor σij is symmetric, we may
substitute σij → (σij + σji)/2 and (III.5) to the second integral in (III.8), which leads to

δw = −σijδεij. (III.9)

Now we introduce the internal energy E per unit volume. An infinitesimal change
of the internal energy due to external work is specified as (see [8])

dE = Tds− dw, (III.10)

where T is the temperature, s is the entropy per unit volume and δw is determined by
the relation (III.9). We assume a slow deformation process, which keeps thermodynamic
equilibrium. Now we introduce the free energy F = E− Ts. Differentiating of the free
energy gives

dF = −sdT− dw = −sdT + σijδεij. (III.11)

The free energy is suitable for expressing the stress tensor at a constant temperature:

σij =
∂F
∂εij

∣
∣
∣
∣
∣
T=const.

. (III.12)
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III.3 Hooke’s law

Let us now expand the free energy in terms of the strain tensor to the second order. For
a deformed body at a constant temperature T, the undeformed state corresponds to a
state with no acting external forces at the temperature T. Then both εij and σij are equal
to zero. According to (III.12), the first-order (linear) term vanishes. Thus the expansion
of F to the second order will be

F = F0 +
1
2

λ

(
3

∑
i=1

εii

)2

+ µ
3

∑
i=1

3

∑
j=1

ε2
ij. (III.13)

This relation is valid for a free energy of a deformed isotropic body [8]. The factors λ
and µ are called Lamé coefficients. It is convenient to separate the trace of the strain tensor,
which corresponds to changes in the body volume [8]. The trace of the strain tensor is
zero for a case of a pure shear. On the other hand, if only the trace of the strain tensor is
nonzero, it is a hydrostatic compression. We may decompose the strain to a sum of a pure
shear and a hydrostatic compression:

εij =

(

εij −
1
3

δijεkk

)

+
1
3

δijεll . (III.14)

This allows to rewrite the free energy:

F = F0 + µ
3

∑
i=1

3

∑
j=1

(

εij −
1
3

δijεkk

)2

+
1
2

Kε2
ll , (III.15)

where K is the bulk modulus. The coefficient µ is a shear modulus, as it is connected with
the shear component of the strain.

The bulk modulus can be expressed in terms of the Lamé coefficients as

K = λ +
2
3

µ. (III.16)

The free energy has a minimum value in a thermodynamic equilibrium, if no external
forces are acting upon the continuum. This means F(εij) = 0 for εij = 0, which can
be satisfied by a positive quadratic form, which requires that K and µ are positive, i. e.
K > 0 and µ > 0.

If we differentiate (III.15), we get

dF = 2µ
3

∑
i=1

3

∑
j=1

(

εij −
1
3

δijεkk

)

d
(

εij −
1
3

δijεkk

)

+ Kεlldεll =

= 2µ
3

∑
i=1

3

∑
j=1

(

εij −
1
3

δijεkk

)

dεij + Kεlldεll . (III.17)

Rewriting the trace of the strain tensor leads to

dF =
3

∑
i=1

3

∑
j=1

[

2µ

(

εij −
1
3

δijεkk

)

+ Kδijεll

]

dεij. (III.18)
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Substituting (III.18) to (III.12) gives a relation

σij = 2µ

(

εij −
1
3

δijεkk

)

+ Kδijεll. (III.19)

The trace of the stress tensor is
σii = 3Kεll , (III.20)

as the sum of the diagonal of the first term in (III.19) is identically zero. Substituting this
back to the (III.19) gives

εij =
1

2µ

(

σij −
1
3

δijσkk

)

+
1

9K
δijσll, (III.21)

which is the Hooke’s law for the isotropic continuum.
Substituting the expression for the bulk modulus (III.16) into (III.19) leads to

σij = 2µεij + λδijεkk, (III.22)

where λ =
2νµ

1− 2ν
. (III.23)

Now we introduce elastic constants cijkl, which express a relation between the stress
tensor and the strain tensor:

σij = cijklεkl . (III.24)

Substituting the formula (III.5) into (III.24) gives a relation between the stress tensor and
the displacement:

σij = cijkl
∂uk

∂xl
(III.25)

Comparing (III.25) with (III.22) gives elastic constants for an isotropic continuum:

cijkl = µ(δikδjl + δilδjk) + λδijδkl. (III.26)

III.3.1 Finding the displacement by the Green function method

The following derivations follows ideas from [6]. We start with the equation for the force
equilibrium (III.6). We substitute (III.25):

fi = cijkl
∂2uk

∂xj∂xl
. (III.27)

Substituting (III.26) for an isotropic case, we have

fi = (λ + µ)
∂

∂xi

∂uj

∂xj
+ µ

∂2ui

∂xl∂xl
, f = (λ + µ)∇(∇ · u) + µ∆u. (III.28)

The vector field u may be represented by a combination of a scalar potential φ and a
vector potential A:

u = ∇φ +∇× A, ui =
∂φ

∂xi
+ ǫijk

∂Ak

∂xj
. (III.29)
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Substituting (III.29) into (III.28) leads to

fi = (λ + 2µ)∆
∂φ

∂xi
+ µ∆ǫijk

∂Ak

∂xj
. (III.30)

For a particular choice of φ and A, the equation (III.28) is equivalent to a biharmonic
equation. We choose following scalar potential φ and vector potential A:

φ =
f̃ j

8π(λ + 2µ)

∂r
∂xj

, Ai = ǫijk
f̃ j

8πµ

∂r
∂xk

. (III.31)

This choice of potentials gives a biharmonic equation:

fi =
f̃m

8π

∂2

∂xm∂xi
∆r +

f̃m

8π
ǫijkǫkmn

∂2

∂xn∂xj
∆r =

∣
∣ǫijkǫkmn = δimδjn− δinδjm

∣
∣ =

=
f̃m

8π

∂2

∂xm∂xi
∆r +

1
8π

(

f̃i
∂2

∂xj∂xj
− f̃ j

∂2

∂xi∂xj

)

∆r =
f̃i

8π
∆∆r. (III.32)

For a case of a point force f̃i = − fiδ(r), the biharmonic equation2 takes the following
form:

∆∆|r| = −8πδ(r). (III.34)

Inserting this into the relation for the displacement (III.29) leads to

ui =
f̃ j

8π(λ + 2µ)

∂2

∂xj∂xi
+ ǫijkǫkmn

f̃m

8πµ

∂2r
∂xj∂xm

=
∣
∣ǫijkǫkmn = δimδjn − δinδjm

∣
∣ =

=
f̃ j

8π(λ + 2µ)

∂2

∂xj∂xi
+

1
8πµ

[

f̃i
∂2r

∂xj∂xj
− f̃ j

∂2r
∂xj∂xi

]

=

=
1

8πµ

[

f̃i∆r− f̃ j
λ + µ

λ + 2µ

∂2r
∂xj∂xi

]

. (III.35)

The displacement can be also expressed as ui = f̃ juij, where

uij =
1

8πµ

[

δij∆r− λ + µ

λ + 2µ

∂2r
∂xj∂xi

]

. (III.36)

A displacement caused by a continuous distribution of forces f j(r) in an elastic contin-
uum is then given by

ui(r) =
∫

uij(r − r′) f j(r
′)dV ′. (III.37)

2The relation (IV.11c) has been used: ∆|r| = 2/|r|.
The equation (III.34) is analogic to an electrostatic potential problem.
An electrostatic potential fulfils the Poisson equation:

∆V(r) = −4πρ(r), (III.33)

where V(r) is an electrostatic potential and ρ(r) is a charge density.
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IV. BASICS OF DISLOCATION

THEORY

IV.1 Dislocations and deformation

IV.1.1 Burgers vector in terms of the theory of elasticity

The dislocations are line defects in a crystalline material. They have a defined direction
(unit vector ξ) and a Burgers vector b, which measures the strength of the dislocation
defect. As mentioned in section I.2.2, the Burgers vector is defined by a closed circuit in
the damaged crystal, which is transferred to the perfect crystal and closed by the Burgers
vector (FS/RH convention). Now we introduce the local Burgers vector (Fig. IV.1).

a) b)

X

Y

Z

SS FF

11 22

33

b

Figure IV.1: The local Burgers vector (SF/RH convention).

The difference is that the local Burgers vector is not affected by elastic strains and
thermal vibrations [6]. The circuit is made at first in the perfect crystal, then it is trans-
posed to the crystal with the dislocation. Again, the circuit has the right-hand sense
(section I.2.2). As in the definition of the true Burgers vector, the transposed circuit is
not closed. To make the local Burgers vector consistent with the true Burgers vector,
we connect the starting point S with the ending point F. This is a SF/RH convention.
Actually, these two definitions coincide, when we take a limit of the circuit becoming
large enough to lie in a perfect crystal.

An alternative definition of the local Burgers vector is possible with the displacement
field u in the theory of elasticity. Let us take a contour integral about a dislocation line
along an arbitrary contour C, called a Burgers circuit, which encircles the dislocation in
an undamaged material:

b =
∮

C
∂u

∂l
dl. (IV.1)

The situation is illustrated in Fig. IV.2. A dislocation line is a boundary of an area
subjected to slip displacement. Because of this, dislocation lines cannot end in a point
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IV.1. Dislocations and deformation

inside the crystal, unless it meets another dislocation, free surface, grain boundary or
another defect (e.g. a precipitate).

dl

C

ξ

Figure IV.2: Definition of the Burgers vector in a continuum theory.

IV.1.2 Conservation of the Burgers vector

The Burgers vector is computed by the contour integral along a Burgers circuit (equation
(IV.1). The result of the integral does not change, if we reshape the circuit, as long as it
remains in an undamaged crystal. If there are three or more dislocations meeting at a
particular point (a junction), we can pull the Burgers circuit of one of the dislocation over
the junction. It will encircle the remaining dislocations coming to the point (Fig. IV.3).

b1

b2

b3

C

C ′

Figure IV.3: Transformation of the Burgers circuit C to C ′.

As the condition of the contour lying in the undamaged material is satisfied, the
result of the integral is the same. If the first dislocation has a Burgers vector b1, while
the other have b2, b3, . . ., we have:

b1 =
n

∑
i=2

bi (IV.2)

for n dislocations. If we invert the sense ξ of the first dislocation, so that all of them are
coming out of the junction, the relation changes to

n

∑
i=1

bi = 0. (IV.3)
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IV.2 Theory of curved dislocations

IV.2.1 Displacement vector field

In the following paragraphs, a displacement connected with a particular dislocation
loop will be derived, following the steps from [6]. When a dislocation is created, a
displacement at r is determined by the displacement vector field u(r). A point force F
acting during the creation of the dislocation at the point r does work

W = F · u(r) = Fmum(r), (IV.4)

where F = {Fm}, u(r) = {um(r)}, m ∈ {1, 2, 3}. Let us assume that the creation
of the dislocation (the building of the displacement field u(r)) relieves the point force
F . Then an energy of the system decreases by an mount W, the interaction energy.
However, the contributions to the elastic energy from the stress field of dislocation and
the stress field produced by the force F are independent, i.e. have no cross terms [6].
Also the dislocation line is not a sink of interaction energy. Therefore, the interaction
energy W must be consumed during the creation of the u(r) field.

We apply these principles to a case of a dislocation loop in an infinite material (Fig.
IV.4). Here, the energy W is spent as the work done on the surface A during the creation
of the dislocation loop C:

W = −
∫

A
dAj biFmσijm(r

′ − r), (IV.5)

where Fmσijm(r
′ − r) is the stress σij at r′ due to the point force Fm at r. The Burgers

vector b is specified by its components bi and the surface element dA by dAj.

ξ

dl

b

r

r′

F
u

dA
n

C

Figure IV.4: A point force F acting within an infinite elastic material containing a dislo-
cation loop.

Using the Hooke’s law (III.25), the relation (IV.5) turns into

W = −
∫

A
dAj bicijkl

∂Fmumk(r
′ − r)

∂x′l
, (IV.6)

where umk(r
′ − r) is the Green’s function of elastic displacements (III.36). We choose Fm

with only one nonzero component m′ ∈ {1, 2, 3} (Fm = F′mδmm′) and substitute it into
equations (IV.4) and (IV.6). Furthermore, we recall the argument related to the balance
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IV.2. Theory of curved dislocations

of the interaction energy W and the work spent on the surface A and equate the (IV.4)
and (IV.6), which yields

um(r) = −
∫

A
dAj bicijkl

∂umk(r
′ − r)

∂x′l
. (IV.7)

The relation (IV.7) applies generally to anisotropic material. In further derivations, an
isotropic material is assumed.

Substituting (III.26) for the elastic constants for an isotropic material, the relation
(IV.7) changes to

um(r) = −
∫

A
dAj bi

[
µ(δikδjl + δilδjk) + λδijδkl

] ∂umk

∂x′l
=

= −λ
∫

A
dAi bi

∂umk

∂x′l
− µ

∫

A
dAj bi

∂umi

∂x′j
− µ

∫

A
dAj bi

∂umj

∂x′i
. (IV.8)

As a next step, the Green’s function (III.36) is substituted. The following relations adopt
substitutions q = r′ − r and q = |q|, where r = (x1, x2, x3) and r′ = (x′1, x′2, x′3). A
straightforward calculation leads to a relation for partial differentials of q:

∂q
∂x′i

= − ∂q
∂xi

. (IV.9)

For vector notation we use

[∇φ]i =
∂φ

∂xi
, [∇′φ]i =

∂φ

∂x′i
, ∆φ = ∑

i

∂2

∂x2
i

φ, ∆′φ = ∑
i

∂2

∂x′2i
φ, (IV.10)

where φ is a scalar function. Following identities will be frequently used:

a) ∇
′q =

q

q
,

b) ∇′
1
q

= − q

q3

c) ∆′q =
2
q

.

(IV.11)

The relation for the displacement field then changes to

um(r) = − 1
8πµ





∫

A

dAi biλ

(

∂∆′q
∂x′m

− λ + µ

λ + 2µ

∂3q
∂x′m∂x′2k

)

+ µ
∫

A

dAj bm
∂∆′q
∂x′j
−

− µ
∫

A

dAj bi
λ + µ

λ+2µ

∂3q
∂x′m∂x′i∂x′j

+ µ
∫

A

dAm bi
∂∆′q
∂x′i
− µ

∫

A

dAj bi
λ + µ

λ+2µ

∂3q
∂x′m∂x′j∂x′i



 =

=
1

8π

(

1− 2
λ + µ

λ + 2µ

) ∫

A
bi

∂∆′q
∂x′m

dAi −
1

8π

∫

A
bm

∂∆′q
∂xj

dAj −

− 1
8π

∫

A
bi

∂∆′q
∂xi

dAm +
1

4π

λ + µ

λ + 2µ

∫

A
bi

∂3q
∂x′m∂x′i∂x′j

dAj (IV.12)
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The relation can be further rearranged by expanding ∆′q = ∂2q/∂x′2j in the first term,
allowing it to be combined with the third and fourth term. This makes the equation
more symmetric:

um(r) = − 1
8µ

∫

A
bm

∂∆′q
∂x′j

, dAj −
1

8π

∫

A

(

bi
∂∆′q
∂x′i

dAm − bi
∂∆′q
∂x′m

dAi

)

+

+
1

4π

λ + µ

λ + 2µ

∫

A

(

bi
∂

∂x′i

∂2q
∂x′m∂x′j

dAj − bi
∂

∂x′j

∂2q
∂x′m∂x′j

dAi

)

. (IV.13)

Here we make use of the Stokes’ theorem:
∫

A
(∇× B)dA =

∮

C
B · dl,

∫

A
ǫijk

∂Bk

∂xj
dAi =

∮

C
Bldll. (IV.14)

If we insert B = φek and dl = dxiei and multiply the result with ǫkmn and then change
the indices {m, n} → {i, j}, we have

∫

A

(

∂φ

∂xj
dAi −

∂φ

∂xi
dAj

)

= ǫijk

∮

C
φ dxk, (IV.15)

which corresponds to the second term of (IV.13) with φ = ∆′q and the third term with
φ = ∂2q/(∂x′m∂x′j).

Using the Stokes’ theorem transforms the relation for the displacement vector field
of an isotropic crystal to

um(r) = −
1

8π

∫

A
bm

∂∆′q
∂x′j

dAj −
1

8π

∮

C
biǫmik∆′q dx′k −

1
8π(1− ν)

∮

C
biǫijk

∂2q
∂x′m∂x′j

dx′k.

(IV.16)
The relation (IV.16) can be rewritten to a vector notation. Using (IV.11c) followed by
(IV.11b), we may express the first integral in (IV.16) as

Ω = −
∫

A

q · dA

q3 , (IV.17)

which is the solid angle corresponding to the area A from a position r. The second term
just makes use of (IV.11c), leading to

− 1
4π

∮

C

b× dl

q
. (IV.18)

The third term is rearranged by putting the derivative ∂/∂x′m (gradient) before the inte-
gral and using (IV.11a) for ∂/∂x′j:

− 1
8π(1− ν)

∇
′
∮

C

(b× q) · dl′

q
. (IV.19)

Combining (IV.17) + (IV.18) + (IV.19) gives

u(r) = − b

4π
Ω− 1

4π

∮

C

b× dl′

q
+

1
8π(1− ν

)∇
∮

C

(b× q) · dl

q
. (IV.20)
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IV.2.2 Stress field due to a curved dislocation

Having the vector field of displacement, it is possible to compute the stress field from the
Hooke’s law applied to the strain determined by the differentiation of the displacement
field (IV.16) or its vector form (IV.20). At first we differentiate the solid angle Ω:

∂Ω

∂xj
=
∮

C

q · (ej × dl)

q3 , (IV.21)

which can be written also as

∂Ω

∂xj
= −1

2

∮

C
ǫijk

∂∆′q
∂x′i

dx′k. (IV.22)

The relation (IV.22) is substituted into the derivative:

∂um(r)

∂xl
=

U1

︷ ︸︸ ︷

bm

8π

∮

C
ǫilk

∂∆′q
∂x′i

dx′k −
1

8π

∮

C
biǫmik

∂∆′q
∂xl

dx′k

U2

︷ ︸︸ ︷

− 1
8π(1− ν)

∮

C
biǫijk

∂3q
∂xl∂x′m∂x′j

dx′k .

(IV.23)
The formulation of the the Hooke’s law as a function of the displacement field is

(III.25). Inserting the elastic constants for isotropic continuum (III.26) leads to

σαβ =
∂um

∂xl
[

µ

︷ ︸︸ ︷

µ(δαmδβl + δαlδβm) +

λ

︷ ︸︸ ︷

λδαβδml]. (IV.24)

The rearrangement using (IV.9) and changing of indices yields:

µ U1 =
µ

8π

∮

C
dx′k

[

(bmǫilkδαmδβl + bmǫilkδαlδβm)
∂∆′q
∂x′i

]

+

+
µ

8π

∮

C
dx′k

[

(biǫmikδαmδβl + biǫmikδαlδβm)
∂∆′q
∂x′l

]

=

∣
∣
∣
∣

{m, i, l}→{l, m, i}
in 2nd term

∣
∣
∣
∣
=

=
µ

8π

∮

C
dx′k

[
δαmδβlǫilk + δαlδβmǫilk + δαiδβlǫlmk + δαlδβiǫlmk

]
bm

∂∆′q
∂x′i

, (IV.25)

µ U2 =
µ

8π(1− ν)

∮

C
dx′k

[
(biǫijkδαmδβl + biǫijkδαlδβm

] ∂3q
∂x′l∂x′m∂x′j

=

=
µ

4π(1− ν)

∮

C
dx′k biǫijk

∂3q
∂x′α∂x′β∂x′j

, (IV.26)

λ U1 =
λ

8π

∮

C
dx′k bmδαβδmlǫilk

∂∆′q
∂x′i

+
λ

8π

∮

C
dx′k biδαβδmlǫmik

∂∆′q
∂x′l

=

=

∣
∣
∣
∣

i ↔ m/1st term
m→ j/both terms

∣
∣
∣
∣
= −

λδαβ

4π

∮

C
dx′k biǫijk

∂∆′q
∂x′j

, (IV.27)

λ U2 =
λ

8π(1− ν)

∮

C
dx′k δαβδmlbiǫijk

∂3q
∂x′l∂x′m∂x′j

=

=
λδαβ

8π(1− ν)

∮

C
dx′k biǫijk

∂∆′q
∂x′j

. (IV.28)
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Summing up the four relations above leads to

σαβ =
µ

8π

∮

C
dx′k

[

T1

︷ ︸︸ ︷

δαmδβlǫilk +

T2

︷ ︸︸ ︷

δαlδβmǫilk +

T3

︷ ︸︸ ︷

δαiδβlǫlmk +

T4

︷ ︸︸ ︷

δαlδβiǫlmk
]
bm

∂∆′q
∂x′i

+

+
µ

4π(1− ν)

∮

C
dx′k biǫijk

∂3q
∂x′α∂x′β∂x′j

−
µνδαβ

4π(1− ν)

∮

C
dx′k biǫijk

∂∆′q
∂x′j

,

(IV.29)

where λ is expressed in terms of µ and ν, see (III.23).
The terms in the first integral can be further simplified using the following relation

for the antisymmetric tensor:

ǫkijǫklm = δilδjm− δimδjl ⇒ δilδjm = ǫkimǫkl j + δijδlm. (IV.30)

Therefore, following expansions apply to the first integral in (IV.29):

T1 = ǫilk(ǫplαǫpβm+δαβδlm) = ǫpβm(δipδkα−δiαδkp)+ǫimkδαβ = ǫiβmδkα−ǫkβmδiα+ǫimkδαβ,

T2 = ǫilk(ǫplβǫpαm+δαβδlm) = ǫpαm(δipδkβ−δiβδkp)+ǫimkδαb = ǫiαmδkβ−ǫkαmδiβ+ǫimkδαβ,

T3 = ǫβmkδαi,

T4 = ǫαmkδβi.

(IV.31)
The term T3 is cancelled by the first term of the expansion of T1 and the term T4

by the second term of the expansion of T2 . A summation of the terms above gives a
result

2ǫimkδαβ + ǫiβmδαk + ǫiαmδβk. (IV.32)

Substituting this result back to the equation (IV.29) gives

σαβ =
µ

8π

∮

C
bmǫiβm

∂∆′q
∂x′i

dx′α +
µ

8π

∮

C
bmǫiαm

∂∆′q
∂x′i

dx′β −
µδαβ

4π

∮

C
biǫijk

∂∆′q
∂x′j

dx′k+

+
µ

4π(1− ν)

∮

C
biǫijk

∂3q
∂x′α∂x′β∂x′j

dx′k −
µνδαβ

4π(1− ν)

∮

C
biǫijk

∂∆′q
∂x′j

dx′k,

(IV.33)
where the indices in the third integral have been changed: {i, m} → {j, i}. Grouping
the terms with factor δαβ gives a final form for the stress field generated by a dislocation
curve C:

σαβ =
µ

8π

∮

C
bmǫiβm

∂∆′q
∂x′i

dx′α +
µ

8π

∮

C
bmǫiαm

∂∆′q
∂x′i

dx′β+

+
µ

4π(1− ν)

∮

C
biǫijk

[

∂3q
∂x′α∂x′β∂x′j

− δαβ
∂∆′q
∂x′j

]

dx′k.
(IV.34)

IV.2.3 Stress field due to a straight dislocation segment

The stress field formula (IV.34) will be used to calculate a stress field about a straight
dislocation segment. To perform the calculation, a local coordinate system (x, y, z) is
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IV.2. Theory of curved dislocations

adopted (Fig. IV.5). The vector r = (x, y, z) defines a point, in which the components
of the stress tensor are calculated. The vector r′ determines points on the dislocation
segment and serves thus as an integration parameter. We recall the distance vector q =

r′ − r. Its length is q = |q| =
√

x2 + y2 + (z− z′)2. The dislocation segment of length L
has endpoints at [0, 0,−L/2] and [0, 0, L/2].

The integration of the formula (IV.34) is carried along the z axis from z = −L/2 to
z = L/2. This does not contradict the initial idea about the energy W originating from
the point force F, which is spent on the work done on the surface A, which is encircled
by the dislocation loop C (see section IV.2.1). As long as the segmentation is applied to a
dislocation loop, or to an infinite dislocation line (which can be considered as a part of a
loop of an infinite radius), the calculation fulfils the initial assumptions. The result of the
integration gives relations for the individual components of the stress tensor σαβ(r) [6]:

σxx

σ0
= bx

y
q(q + ζ)

[

1 +
x2

q2 +
x2

q(q + ζ)

]

+ by
x

q(q + ζ)

[

1− x2

q2 −
x2

q(q + ζ)

]

,

σyy

σ0
= −bx

y
q(q + ζ)

[

1− y2

q2 −
y2

q(q + ζ)

]

− by
x

q(q + ζ)

[

1 +
y2

q2 +
y2

q(q + ζ)

]

,

σzz

σ0
= bx

[
2νy

q(q + ζ)
+

yζ

q3

]

+ by

[

− 2νx
q(q + ζ)

− xζ

q3

]

,

σxy

σ0
= −bx

x
q(q + ζ)

[

1− y2

q2 −
y2

q(q + ζ)

]

+ by
y

q(q + ζ)

[

1− x2

q2 −
x2

q(q + ζ)

]

,

σxz

σ0
= −bx

xy
q3 + by

[

−ν

q
+

x2

q3

]

+ bz
y(1− ν)

q(q + ζ)
, (IV.35)

σyz

σ0
= bx

[
ν

q
− y2

q3

]

+ by
xy
q3 − bz

x(1− ν)

q(q + ζ)
, where σ0 =

µ

4π(1− ν)
and ζ = z′ − z.

The stress components can be rewritten also in different terms [6]:

σxx

σ0
= −bx

yζ

θ2q

(

1 +
2x2

θ2 +
x2

q2

)

− by
xζ

θ2q

(

1− 2x2

θ2 −
x2

θ2

)

σyy

σ0
= bx

yζ

θ2q

(

1− 2y2

θ2 −
y2

q2

)

+ by
xζ

θ2q

(

1 +
2y2

θ2 +
y2

θ2

)

σzz

σ0
= −bx

(
2νyζ

θ2q
− yζ

q3

)

− by

(
2νxζ

θ2q
+

xζ

q3

)

σxy

σ0
= bx

xζ

θ2q

(

1− 2y2

θ2 −
y2

q2

)

− by
yζ

θ2q

(

1− 2x2

θ2 −
x2

θ2

)

σxz

σ0
= −bx

xy
q3 + by

(

−ν

q
+

x2

q3

)

− bz
yζ(1− ν)

θ2q
σyz

σ0
= bx

(
ν

q
− y2

q3

)

+ by
xy
q3 + bz

xζ(1− ν)

θ2q
, where θ2 = x2 + y2. (IV.36)

The stress field about a straight dislocation segment is then given as

σ̃αβ(r) = σαβ(r)
∣
∣
z′=+L/2− σαβ(r)

∣
∣
z′=−L/2 , (IV.37)
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x

y

z

r

r′

q

dz′

Figure IV.5: Local coordinates for a calculation of a stress field about a straight disloca-
tion segment

where the components are substituted from (IV.35) or (IV.36). These components differ
by integration constants, however, they provide a correct solution for the segment stress
when substituted to (IV.37) since the integration constants are subtracted.

IV.3 Transformation of coordinates

The relations for the stress field of a straight dislocation segment presented in section
IV.2.3 relate to a convenient local coordinate system (x, y, z) centered in the segment cen-
ter with the z axis directed along the dislocation segment. To make use of these relations
for an arbitrary dislocation configuration, a coordinate transformation is necessary.

Therefore, we introduce a global coordinate system is (X, Y, Z). We start with a
straight dislocation segment i of length Li centered at Ri, whose Burgers vector is bi
and its direction is ξi. To calculate a stress field of such dislocation segment at a point
Rj, we need to construct a local coordinate system (xi, yi, zi). As only the direction of the
zi axis is known (given by the vector ξi), the xi and yi axes are arbitrary, as long as they
are perpendicular to each other and to zi. We prefer following choice of the coordinate
system:

zi = ξi,

yi =
zi × bi

|zi × bi|
,

xi =
yi × zi

|yi × zi|
.

(IV.38)

In case of a screw dislocation segment, i.e. b ‖ ξ, we take a cyclic permutation of the
components of b in the cross product to acquire a non-zero vector perpendicular to ξ.

The vectors xi, yi, zi represent an orthonormal basis of the local coordinate system
(x, y, z) and also a transformation operator T̂i from the local coordinate system (x, y, z)
to the global coordinate system (X, Y, Z). The inverse operator T̂−1

i transforms a vector
from (X, Y, Z) to (x, y, z):

U = T̂iu, u = T̂−1
i U , (IV.39)
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IV.4. Peach-Koehler force

where U and u represent the same vector, the former represented in the global and
the latter in the local coordinate system. Starting from here, the vector quantities rep-
resented in global coordinates are denoted by bold uppercase letters, like U , whereas
their local coordinate associates by bold lowercase letters, like u. The sole exception is
the Burgers vector b, whose local coordinate representation is denoted by T̂−1

i b.
The stress field of a straight dislocation segment of length Li evaluated in a point r j is

σ̃(r j, Li, T̂−1b), see Eq. (IV.35-IV.37) for a full form. The representation of the stress field
in global coordinates is

σ̂j,i(R j,i, Li, b) = T̂iσ̃(T̂
−1
i Rj,i, Li, T̂−1

i b)T̂−1
i , (IV.40)

where Rj,i = Rj − Ri.

IV.4 Peach-Koehler force

There are two distinct modes of dislocation motion in a crystal, glide (a conservative
mode) or climb (a non-conservative mode). The glide motion breaks and re-establishes
only bonds between neighbouring atoms. This process allows dislocations to move in
a glide plane. During the glide motion, the crystal lattice changes that a superfluous
atomic plane forming the edge dislocation is displaced by many atomic layers, but the
individual atoms are only slightly shuffled.

The climb motion is caused by diffusion of interstitials and/or vacancies (sections
I.2 and IV.5). The dislocation climb is thus connected with a transport of matter through
the crystal lattice. The idea of a Peach-Koehler force, which causes a displacement of a
dislocation, originates in the work connected with the transport of matter in the crystal
lattice. The derivation is further described in the literature, see e.g. [6].

We consider a straight dislocation line of a mixed character with a unit direction
vector ξ and a Burgers vector b. The Burgers vector can be decomposed into an edge
component be and a screw component bs. The glide plane of such dislocation is deter-
mined by its edge component and contains both the Burgers vector b and the direction
vector ξ. Screw dislocations, in principle, do not have a definite glide plane, even though
crystallography still dictates a preferential glide planes for screw dislocations.

If the dislocation climbs over a distance δh perpendicular to the glide plane, an
amount of matter per unit length must be removed:

δν = beδh. (IV.41)

This can be expressed by vector notation:

δν = (ξ × b) · δr, (IV.42)

where the cross product is normal to the slip plane (its length denotes the edge compo-
nent of the Burgers vector be), so only the component of δr normal to the slip plane is
important for the non-conservative motion. The situation is depicted in Fig. IV.6.

If the dislocation moves by δr, a cut of an area ξ× δr is made per unit length. Then the
material is removed uniformly over the cut (equation (IV.42)) and the material continuity
needs to be restored. This is done by the displacement of the opposite surfaces of the
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δr

ξ

b

be

bs

β

Figure IV.6: A mixed dislocation with direction ξ and Burgers vector b displaced by δr.

cut by b. If there is a uniform stress over the dislocation core, the work done by the
operation is

δW = F · δr = [σ̂ · (ξ × δr)] · b, (IV.43)

where the term σ̂ · (ξ × δr) denotes a force upon the surface ξ × δr originating in the
stress σ̂. Rewriting the equation (IV.43) gives

F · δr = b · [σ̂ · (ξ × δr)] = (b · σ̂) · (ξ × δr) = [(b · σ̂)× ξ] · δr. (IV.44)

The force per unit length is called the Peach-Koehler force and is determined by the
formula [6]:

F = (b · σ̂)× ξ. (IV.45)

The force can be decomposed into a climb component

FC =
F · (b× ξ)

(b× ξ)2 (b× ξ) (IV.46)

and a glide component

FG = F − FC =
F · [ξ × (b× ξ)]

(b× ξ)2 [ξ × (b× ξ)]. (IV.47)

IV.5 Dislocation climb rate

The non-conservative dislocation motion (climb) is a thermally activated process, which
is very important for the high temperature plasticity. A derivation of dislocation climb
velocity (climb rate) is presented in this chapter along lines discussed in [51].

It is assumed that the diffusion process is mediated by a flux of vacancies. The va-
cancy concentration field generally fulfils the first Fick’s law [52]:

∂c(r, t)
∂t

= ∇ · J, (IV.48)

where J is the vacancy flux determined by

J =
Dv(r)c(r, t)

kT
∇µv(r, t), (IV.49)
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IV.5. Dislocation climb rate

where µv is the vacancy chemical potential related to the local vacancy concentration
and the elastic interaction energy within the crystal, k is Boltzmann’s constant, T is the
temperature and Dv is the vacancy diffusion coefficient dependent on the vacancy mi-
gration energy Em:

Dv = D0
v exp

(

−Em

kT

)

. (IV.50)

In what follows, a solution to the diffusion vacancy field is given in a stress field of a
dislocation. The solution is obtained under following assumptions [51]:

• The vacancy diffusion is fast compared to the velocity of dislocations. Therefore,
the vacancy flux reaches a steady state at every time step and the left hand side of
(IV.48) is zero.

• The elastic interaction energy between the dislocations and vacancies is neglected,
the chemical potential of vacancies is then

µv(r) = kT ln
c(r)
c0

, (IV.51)

where c0 is the equilibrium vacancy concentration at temperature T in a crystal
free of defects; c0 is determined by a vacancy formation energy E f

c0 =
1
Ω

exp
(

−
E f

kT

)

. (IV.52)

• The diffusion coefficient is constant throughout the crystal and independent of
time.

• Any point along the dislocation may act as a vacancy source or sink.

A substitution of the equation (IV.49) into (IV.48) with the above assumptions yields
a Laplace’s equation:

∆c(r) = 0. (IV.53)

rd, cd

r∞, c∞

Figure IV.7: A cylindrical volume containing a dislocation line. The vacancy flux direc-
tion is indicated by the arrows.
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The solution considers a cylindrical volume around a unit length of the dislocation line
(see Fig. IV.7). The dislocation climb velocity is to be calculated. The inner radius rd is
approximately of the order of the dislocation core radius (i.e. rd ∼ rC). Since dislocations
are perfect sinks or sources of vacancies, the concentration of the vacancies should be in
equilibrium with the dislocation near the dislocation core [6]:

cd = c0 exp
(

FCΩ

bkT

)

. (IV.54)

There FC is the climb component of the Peach-Koehler force (section IV.4), Ω is the
atomic volume and be is the length of the edge component of the Burgers vector. The
outer radius r∞ of the cylindrical volume exhibits a vacancy concentration c∞ character-
istic for the bulk crystal. The boundary condition is thus c(r∞) = c∞.

As the concentrations do not depend on the angle or the position along the dislo-
cation line, the differential equation for the vacancy concentration (IV.53) reduces to an
ordinary differential equation:

1
r

∂

∂r

(

r
∂c(r)

∂r

)

= 0. (IV.55)

According to [51], the solution is

c(r)− c∞ =
c∞ − cd

ln r∞/rd
ln

r
r∞

. (IV.56)

Substituting the result to (IV.49), we obtain the vacancy flux:

J(r) = −Dv
∂c(r)

∂r
= −Dv(c∞ − cd)

r ln(r∞/rd)
. (IV.57)

If we assume that each segment is a perfect sink of vacancies and there is no pipe diffu-
sion, then the number of vacancies diffusing in or out from the dislocation core per unit
length and time determine the climb velocity [51]:

vC = ηv
Ds

b

[

exp
(

FCΩ

bkT

)

− c∞

c0

]

, (IV.58)

where Ds = f Dvc0Ω is the solvent self-diffusion coefficient and ηv = 2π/[ f ln(r∞/rd)]
is a geometrical factor of the flux field and the lattice structure and f is the Bardeen-
Herring correlation factor for solvent diffusion. Considering the product Dvc0Ω, the
self-diffusion coefficient may be rewritten as

Ds = D0
s exp

(

−Eact

kT

)

= D0
s exp

(

− Q
RT

)

, (IV.59)

where D0
s = f D0

v, Eact or Q is the activation energy for vacancy self-diffusion, the lat-
ter being a molar quantity. The symbol R represents the universal gas constant. The
equation (IV.58) can be interpreted as a superposition of a force-dependent flux from the
dislocation to the bulk and an absorption from the bulk to the dislocation. When the
vacancy concentration c∞ is close to the equilibrium (no under- or supersaturation), i.e.
c∞ ≈ c0, the climb forces are small, the climb velocity may be approximated as

vC = BFC, B = ηv
DsΩ

b2kT
, (IV.60)

as the dimensionless factor in the exponential term of equation (IV.58) is small.
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IV.6 Dislocation interactions

IV.6.1 Infinite straight dislocation

The relation (IV.37) for the stress field due to a straight dislocation segment can be also
used to compute a stress field of an infinite dislocation.

The stress field about a straight segment is calculated using the relation (IV.37). To
determine the limits lim

L→∞
σ̃ij, we use the components in the form (IV.36), which are suit-

able for the limiting operation L→ ∞. We recall the substitutions ζ = z′− z, θ2 = x2 + y2

and q2 = θ2 + ζ2. Following limits are necessary for the calculation (here l = L/2):

ζ

q

∣
∣
∣
∣
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q

∣
∣
∣
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=
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[θ2 + (l − z)2]
1
2
+

l + z

[θ2 + (l + z)2]
1
2
=

=

(l−z)l
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θ
l

)2
+
(
1+ z

l

)2
] 1

2

+ (l+z)l
[(

θ
l

)2
+
(
1− z

l

)2
] 1

2
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{(
θ
l

)4
+
[

1−
( z

l

)2
]2

+
(

θ
l

)2 [
1 +

( z
l

)2
]}

1
2

(IV.61)

Taking the limit l → ∞, only the l2 terms in the numerator of the fraction (IV.61) won’t
be cancelled. As a result, we have

lim
l→∞

(
ζ

q

∣
∣
∣
∣
z′=l
− ζ

q

∣
∣
∣
∣
z′=−l

)

= 2. (IV.62)

Using the same approach, we may evaluate a limit of similar term:

lim
l→∞

(
ζ

q3

∣
∣
∣
∣
z′=l
− ζ

q3

∣
∣
∣
∣
z′=−l

)

=
(l − z)l3 [· · · ]

3
2 + (l + z)l3 [· · · ]

3
2

l6 {· · · }
3
2

= 0. (IV.63)

Thus we get the components of the stress field generated by an infinite straight disloca-
tion:

σxx = − µ

2π(1− ν)

[

bxy(3x2 + y2)

(x2 + y2)2 +
byx(y2 − x2)

(x2 + y2)2

]

σyy =
µ

2π(1− ν)

[

bxy(x2 − y2)

(x2 + y2)2 +
byx(3y2 + x2)

(x2 + y2)2

]

σxy =
µ

2π(1− ν)

(bxx + byy)(x2 − y2)

(x2 + y2)2

σzz = − µν

π(1− ν)

bxx + byy
x2 + y2

σxz = − µ

2π

bzy
x2 + y2

σyz =
µ

2π

bzx
x2 + y2

(IV.64)
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IV.6.2 Interaction between two dislocations

We use the stress field relations from the preceding section to study interactions between
two parallel dislocations. First, we discuss parallel edge dislocations lying in different
glide planes (Fig. IV.8) with ξ = (0, 1, 0) and b = (b, 0, 0). In the XZ plane, one dis-
location is situated in the origin of the coordinate system, the other dislocation is in a
point [X, Z]. We choose a local coordinate system with x = (1, 0, 0), y = (0, 0,−1)
and z = (0, 1, 0). Then the X component of the Peach-Koehler force acting upon the
dislocation at a point [X, Z] is

FX(X, Z) =
µ

2π(1− ν)

b2X(X2 − Z2)

(X2 + Z2)2 . (IV.65)

X

Z

ξ

b

[X, Z]

FX

FZ

Figure IV.8: Interaction between two parallel edge dislocations.

Two plots of the force as a function of the coordinates [X, Z] are shown in Fig. IV.9.
The forces are calculated for µ = 80 GPa, ν = 0.3 and b = 0.2 nm. The first plot in Fig.
IV.9a shows that for X/Z = 1 the FX component of the Peach-Koehler force is zero, i.e.
dislocations situated along a line X = Z are in an unstable equilibrium. If the dislocation
at [X, Z] is displaced closer to the dislocation at [0, 0], the FX component of the driving
force becomes attractive, whereas when it is displaced away, the driving force becomes
repulsive. If the dislocation is located at [0, Z], the FX component is also zero. However,
this position is stable, because the FX component always points in an opposite direction
upon a displacement of the dislocation.

For a case of two antiparallel dislocations (i.e. with an opposite sign), which form a
dislocation dipole, the driving force has a reversed direction. This makes the position
along a line X = Z stable and the position at [0, Z] unstable.

As the edge dislocations move faster in glide planes than by climbing, the FX com-
ponent is, particularly at low temperatures, more important than FZ. In conclusion, the
force component FX is responsible for the formation of low-angle tilt boundaries con-
sisting of edge dislocations of the same sign.

For a case of two parallel dislocations in the same glide plane, we insert Z = 0 in the
relation (IV.65). This gives

FX =
µ

2π(1− ν)

b2

X
. (IV.66)

The interaction between two parallel edge dislocations of the same sign in a common
glide plane is always repulsive. On the other hand, two dislocations of an opposite sign
are always attracted to each other, which allows them to annihilate.
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Figure IV.9: Force between two parallel edge dislocations.

On the other hand, two parallel screw dislocations have a different behaviour. If we
retain the geometry from Fig. IV.8 and set b = (0, b, 0), we have

FX(X, Z) =
µ

2π

b2X
X2 + Z2 . (IV.67)

The equation (IV.67) shows that two parallel screw dislocations repel each other if they
have the same sign and vice versa. Such a kind of interaction does not lead neither to
a spontaneous formation of a dislocation boundary, nor to its stabilisation, if it already
exists.

IV.6.3 Low-angle dislocation boundary

Now we will investigate an interaction between a low-angle tilt boundary (LATB) and a
single edge dislocation. The geometry depicted in the XZ plane perpendicular to dislo-
cation lines is shown in Fig. IV.10. The boundary consists initially of 6 edge dislocations
separated by a distance h.

There is a single edge dislocation out of the tilt boundary situated at [X, 0]. The force
acting upon this dislocation is determined by a sum

FLATB
X (X, Z) =

2

∑
i=−3

FX

(

X, Z +
2i + 1

2
h
)

. (IV.68)

A plot of FLATB
X (X, 0) is in Fig. IV.11a. Like in the case with two parallel dislocations,

the forces are calculated for µ = 80 GPa, ν = 0.3 and b = 0.2 nm. The distance between
the dislocations in the LATB was h = 20 nm. The first plot in Fig. IV.11a resembles the
plot of the interaction force between two edge dislocations (Fig. IV.9a). Again, there is a
region near the dislocation boundary, where the dislocation line is attracted, but further
away from the boundary it is repelled. For an edge dislocation situated in a general point
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Figure IV.10: Interaction between an edge dislocation and a low-angle tilt boundary.
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Figure IV.11: Force between a low-angle tilt boundary and a probe edge dislocation: a)
at [X, 0], b) at [X, Z].

[X, Z] near the tilt boundary, a force map is presented in Fig. IV.11b. The light regions
represent positive values of the driving force upon the dislocation. The dark regions
represent negative values of the driving force which pushes the probe dislocation to the
left. The Fig. IV.11b shows that there are regions of attraction located between individual
lines of the boundary, whereas dislocations sharing the glide planes with the boundary
dislocations are rejected. For large distances from the boundary, we take the following
limit:

lim
(X2+Z2)→∞

FLATB
X (X, Z) ∼ FX(X, Z). (IV.69)

This means that the line X = Z again delimits the regions of attraction and repulsion of
the dislocation outside the tilt boundary.

A low-angle dislocation boundary consisting of screw dislocations is analogous to
the low-angle tilt boundary described above. As indicated by relation (IV.67) and the
plots in Fig. IV.12), such dislocation structure is not stable. The calculation parameters
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IV.7. Calculation of strain from a dislocation displacement

and the geometry is the same except the Burgers vector, which is set to b = (0, b, 0).
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Figure IV.12: Force between a low-angle dislocation boundary consisting of screw dislo-
cations and a probe screw dislocation: a) at [X, 0], b) at [X, Z].

IV.7 Calculation of strain from a dislocation displacement

A displacement of a dislocation generates permanent strain (plastic deformation) of the
crystal lattice. Here we calculate this strain for a dislocation motion in one particular
glide system. Let’s turn back to the strain tensor εij (section III.5). A Fig. IV.13 shows a
prism (solid line), which is deformed to a parallelepiped (dashed line). The coordinate
system is (x1, x2, x3). Following the steps in the section III.5, we will study a displace-
ment at particular points O, A1 and A2. The point vectors are rO, rA1 and rA2 . Then
u(rO) = (0, 0, 0), u(rA1) = (0, δ1, 0) and u(rA2) = (δ2, 0, 0). If we set a1 = |OA1| and
a2 = |OA2|, we may write:

∆u1

∆x2
=

δ1

a1
= tg γ12,

∆u2

∆x1
=

δ2

a2
= tg γ21. (IV.70)

If the size of the prism in Fig. IV.13 approaches zero, the differentials in the equation
(IV.70) turn into derivatives, giving

∂ui

∂xj
= tg γij ≈ γij, i 6= j. (IV.71)

For small deformations, the shear components of the strain tensor correspond to shear
angles depicted in Fig. IV.131. Thus we can put

εij = tg γij ≈ γij. (IV.72)

1The shear angle is often defined as a change of an angle between two directions in the material before
and after the deformation, in this case α12 = |∢A1OA2| − |∢A′1O′A′2| = 2γ12. For small deformations,
sin αij ≈ αij = 2ε ij [7].
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O = O′ A1

A2
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γ12

γ21

δ1

δ2

Figure IV.13: Meaning of the shear components of the strain tensor.

This idea allows to estimate shear strain due to the propagation of dislocation bound-
ary in a crystal. Assume we have a dislocation boundary consisting of edge dislocations
with a Burgers vector b and with a spacing h between the lines. When a single disloca-
tion line of the dislocation boundary with a Burgers vector b moves through a particular
volume of the crystal lattice, the material under and above the glide plane is shifted by
a distance equal to the length of the Burgers vector |b|. The strain accumulated by this
displacement is

ε =
b
h

. (IV.73)

If the whole dislocation boundary consisting of m dislocation moves through a particu-
lar volume of the crystal, the strain is ε = mb/mh, which is the same result.

If we consider a single dislocation segment with a direction vector ξi and a length Li
which is displaced by a vector ∆Ri, the area swept by the segment is Ai = Li|ξi × ∆Ri|.
The area of the projection of the crystal to the slip plane is A0. The strain coming from a
single dislocation segment is then

εi =
Ai

A0

bi

hi
, (IV.74)

where bi is the magnitude of the Burgers vector bi of the particular segment and hi
delimits the volume displaced by the dislocation. Summing all dislocation segments
gives

ε =
N

∑
i

Li|ξi × ∆Ri|bi

V
, (IV.75)

where V is the crystal volume. If all the lines have the same Burgers vector, introducing
an average displacement per dislocation segment R allows to rewrite (IV.75) to

ε = ρbR, (IV.76)

which is the Orowan equation of the accumulated strain due to dislocation motion [1].
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V. FUNDAMENTALS OF THE

MODEL

The presented model approximates a smooth dislocation curve by a continuous polyg-
onal chain, which consists of straight segments. This greatly simplifies formulas for the
Peach-Koehler force or stress field at the cost of high number of line segments. The lin-
ear theory of elasticity allows to sum up contributions from individual segments, which
compose Peach-Koehler force per unit length of a dislocation line. Displacement of each
segment is calculated from a mobility function which combines appropriate component
of the Peach-Koehler force and a mobility parameter. The new coordinates are obtained
when the displacement is added to the current segment position.

V.1 Stress field and force

Let Ri is the centre of an i-th segment in global coordinates (X, Y, Z). A contribution to
stress field at Rj (centre of another segment) is computed in local coordinates (xi, yi, zi)
(Fig. V.1). Contributions from all segments (Eq. IV.40), whose number is N, are summed
together (Fig. V.2), which leads to the internal stress due to dislocations:

σ̂j(Rj, {Ri, Li, bi}) =
N

∑
i=1,i 6=j

σ̂j,i(Rj,i, Li, bi) =
N

∑
i=1,i 6=j

T̂iσ̃(T̂
−1
i Rj,i, Li, T̂−1

i bi)T̂
−1
i ,

Rj,i = Rj − Ri, (V.1)

following the ideas presented in section IV.3. The stress field is used to calculate the
Peach-Koehler force (see Eq. (IV.45)):

F j = [bj · σ̂j(Rj, {Ri, Li, bi})]× ξ j. (V.2)

However, the linearity of the equations allow to interchange the order of computation
of the Peach-Koehler force by the relation (IV.45) and the summation of contributions
(V.1). This means we can evaluate a contribution to the total Peach-Koehler force acting
on the jth segment by substituting (IV.40) into (IV.45):

F j,i(R j,i, Li, bj, bi) = [bj · σ̂j,i(R j, Li, bi)]× ξ j =
{

bj ·
[

T̂iσ̃(T̂
−1
i Rj,i, Li, T̂−1

i bi)T̂
−1
i

]}

× ξ j.
(V.3)

Therefore, the total Peach-Koehler force upon the jth is computed as a summation of
contributions (V.3):

F j(R j, bj, {Ri, Li, bi}) =
N

∑
i=1,i 6=j

F j,i(Rj,i, Li, bj, bi). (V.4)

This approach is more complex than the summation of the stress fields, however, the
force contributions show the same symmetry as the whole dislocation system. This is
exploited for symmetry optimizations, which will be described further in section VI.9.
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V.1. Stress field and force

The linear combination in (V.1) does not include segment’s own self-interaction, since
the Peach-Koehler formula (IV.34) diverges with q → 0. This stems from a fact, that the
dislocation core is considered to be located sharp at the dislocation line itself. Actually,
the dislocation core is distributed in a finite distance along a dislocation line. One so-
lution of this problem is presented in the paper by Cai et al. [53]. The Burgers vector
is spread in a tube-like volume about a dislocation line by a well-chosen distribution
function. This choice allows to use the relations for stress field due to a straight disloca-
tion segment in a form (IV.35) or (IV.36), only the distance term needs to be substituted:

q →
√

q2 + r2
C, where rC is a dislocation core radius. This method is also described

in [45]. This approach avoids divergent terms in (V.1) and (V.4). Thus an evaluation of
self-interaction in the summation (V.1) is possible.

y

x

z

− L
2

L
2

r

q

Figure V.1: A line segment extending
from z = −L/2 to z = +L/2 and an
associated local coordinate system.

1

2

3

4

5

6

7

8

9

10

11

12

R1,4

R2,4

R3,4R5,4

R6,4

R7,4

R8,4

R9,4

R10,4

R11,4

R12,4

X

Y

Figure V.2: Interaction between segments
of a polygonal loop.

V.1.1 Line tension

Without the regularization based on finite dislocation core radius, the stress components
diverge at a center of a particular segment, when the neighbouring segments are almost
collinear. In such a case, the contributions from the nearest neighbours cannot be cal-
culated according to the scheme presented in the section V.1. The missing contribution
may be estimated by a line tension approximation.

The line tension energy according to [6, 12] is:

ELT(ρa) =
µb2

4π(1− ν)

[

(1 + ν) cos2 β + (1− 2ν) sin2 β
]

ln
ρa

rC
, (V.5)

where ρa is the arc radius and cos β = ξ · b/|b|.
A derivative of the line tension energy with respect to ρa defines the line tension

force:

FLT =
µb2

4πρa(1− ν)

(

1− 2ν + 3ν cos2 β
)

. (V.6)
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The force is directed to the centre of curvature of the arc, which may be determined by
a least-squares fit to a particular segment and it’s two neighbours (4 vertices).

V.2 Equations of motion

Unlike the objects of classical mechanics, the dislocations do not have a mass and thus
do not obey the Newton laws of motion. According to [6, 51], the climb velocity of a
segment is given by a relation

vC =
DsΩ

b2kT
FC

L
= B

FC

L
, (V.7)

where Ω is a volume per atom, b is the length of the Burgers vector, k is the Boltzmann
constant, T is the temperature and Ds is the self-diffusion coefficient, which can be ap-
proximated as

Ds = D0e−
Q

RT , (V.8)

where Q is the activation energy of self-diffusion, R = kNA is the universal gas constant
and NA is the Avogadro constant. The climb velocity is further discussed in section IV.5.

The glide movement is approximated by a similar linear function:

vG = A
FG

L
. (V.9)

The movement in the slip plane is expected to be much faster than the climb, so we
choose A = 10B as a first order approximation.

The particular methods for a decomposition of the driving force F = FG + FC will
be discussed later in section VI.2.

V.3 Time integration of the evolution equations

V.3.1 Euler forward integration

The investigated system of dislocation segments evolves in time in accord with acting
driving forces.

The simplest way of time integration is a product of velocity and time step.

R
(n+1)
i = R

(n)
i + v({R(n)

j })∆t, j ∈ {1, . . . N}. (V.10)

The symbol R
(n+1)
i is a position of i-th segment’s centre at (n+ 1)-th iteration, v({R(n)

j }),
j ∈ {1, . . . N} means that the velocity v is a function of positions of all segments. The
time step length is denoted by ∆t. The Euler integration may not provide stable solu-
tions particularly in cases when underlying functions are subjected to strong variation.
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V.3. Time integration of the evolution equations

V.3.2 Trapezoid integration

The trapezoid integration

R
(n+1)
i = R

(n)
i +

[

v({R(n)
j }) + v({R(n+1)

j })
] ∆t

2
, j ∈ {1, . . . N} (V.11)

largely overcomes weaknesses of the Euler integration. The trapezoid integration is
much more stable, however, it is an implicit integration formula, which has R

(n+1)
i on

both left and right side. Since the Peach-Koehler formula is rather complex to be in-
verted, we adopt an approximation – the Euler-trapezoid integration [45].

V.3.3 Euler-trapezoid integration

Let R
(n+1),E
i is a result of (V.10). Then the trapezoid integration can be approximated by

a relation:

R
(n+1),E−T
i = R

(n),E−T
i +

[

v({R(n),E−T
j }) + v({R(n+1),E

j })
] ∆t

2
, j ∈ {1, . . . N}. (V.12)

The equations (V.10) and (V.12) form a pair of two explicit formulas with comparable
accuracy with trapezoid integration at a cost of doubling the number of numerical op-
erations needed to evaluate velocities v({R(n),E−T

j }) and v({R(n+1),E
j }).

This pair of formulas also allows to estimate integration error. This can be used to
dynamically adjust the time integration step.

δi =
R
(n+1),E−T
i − R

(n+1),E
i

N
∑

j=0

∣
∣
∣R

(n+1),E−T
j − R

(n),E−T
j

∣
∣
∣

,
{

max{δi}> δmax⇒ ∆t(n+1) = t↓∆t(n),
max{δi}≤ δmax⇒ ∆t(n+1) = t↑∆t(n).

(V.13)

The purpose of these relations is to keep a difference between the Euler forward and
trapezoid integration methods (which is the estimation of the integration error) small
with respect to an average segment displacement in the whole dislocation system. This
is measured by the quantity δmax. If the estimated integration error is small, the time
integration step can be prolonged – scaled up by a factor t↑. A reasonable choice of the
scaling factor is t↑ ∈ (1, 1.5). Larger values are not suitable, as they may increase the
integration error too much. If the integration error is too high, the time step is scaled
down by t↓. A reasonable choice is t↓ ∈ (0.3, 0.7), but any value smaller than 1 should
work.

V.3.4 Runge-Kutta method of the 4th order

We may improve the integration accuracy even further using the Runge-Kutta method
of 4th order. New coordinates are determined by the following set of equations:
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R
(n+1)
i (t + ∆t) = R

(n)
i (t) +

∆t
6

(

∆
(n)
i,1 + 2∆

(n)
i,2 + 2∆

(n)
i,3 + ∆

(n)
i,4

)

,

∆
(n)
i,1 = v

(

t, {R(n)
j }

)

∆
(n)
i,2 = v

(

t +
∆t
2

, {R(n)
j +

∆t
2

∆
(n)
j,1 }

)

∆
(n)
i,3 = v

(

t +
∆t
2

, {R(n)
j +

∆t
2

∆
(n)
j,2 }

)

∆
(n)
i,4 = v

(

t + ∆t, {R(n)
j + ∆t∆(n)

j,3 }
)

(V.14)

V.4 New coordinates

V.4.1 Segment forces

N1

N2

N3

N4

M

Figure V.3: The shortest distance be-
tween two segments.

Theory of dislocations [6] suggests how to cal-
culate a Peach-Koehler force per unit length of
a segment. In the presented model, this force
is applied to a segment, which moves with
a velocity given by formulas (V.7) and (V.9),
(VI.6), (VI.11) or (VI.23). However, these dis-
placements of individual segments may result
in situations when the segments are neither connected by their endpoints, nor do they
have an intersection. As a remedy of these disconnections, every two neighbouring seg-
ments are reconnected by a procedure depicted in Fig. V.3. At first it is necessary to find
the shortest line connecting two adjacent segments. The midpoint denoted by the vector
M is used as a new common endpoint of two adjacent segments, which were originally
connected. This technique keeps the dislocation network continuous and allows the
segments to rotate in each iteration.

Finally, the endpoints of the polygonal chain cannot be determined by this method.
Either the endpoints are fixed due to the nature of the simulated process (e.g. Frank-
Read source), or they are mobile, because they lie on a free surface, in a symmetry plane
of the process, or at a boundary plane of the simulation cell (see sections VI.6 and VI.9).
As a result, the direction of the mobile ending dislocation segment is considered fixed,
which allows to compute the coordinates of the endpoints.

The algorithm is further illustrated in Fig. V.4, where three dislocation segments

with endpoints denoted by vectors N
(n)
i are displaced due to driving forces (dashed

segments in the figure). The segments are reconnected using the algorithm described

above, which leads to new coordinates N
(n+1)
i for the next integration step.

V.4.2 Nodal forces

An alternative approach is based on nodal forces, which are computed as a weighted
average of forces applied to segments connected in a node [45]:

Fv =
∑i F iLi

∑i Li
, (V.15)
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Figure V.4: Application of the algorithm for finding new coordinates to a set of 3 dislo-
cation segments.

where F i is a force applied to the segment of a length Li with a centre at Ri.
New coordinates can be computed straightforwardly, however, the glide and climb

components cannot be separated, unless all segments connected to the node have com-
mon glide plane. This feature restricts this approach to planar processes.

V.5 Benchmarks (I.)

V.5.1 A single dislocation loop

X

Y

Z

b

R

Figure V.5: A dislocation loop.

The first benchmark simulation was focused on a
single planar dislocation loop contracting due to its
self-stress. The circular dislocation loop represented
by a regular polygon is shown in Fig. V.5. Coordi-
nates of the polygon vertices are:

N i = (R cos ϕi, R sin ϕi, 0) ,

ϕi =
2π[i− 3

2 ]

N
,

i = 1, . . . , N. (V.16)

Material parameters µ, ν and b, as well as the initial dislocation loop radius R, num-
ber of segments N and other input parameters are listed in the Table V.1.

In the following plots, segment positions are described by a polar angle ϕ, which
determines the coordinate of a segment center: Ri = [ai cos ϕi, bi sin ϕi, 0]. The simu-
lation results are shown in Fig. V.6 The simulation starts with a circular loop of a di-
ameter R (see Table V.1) and shrinks to a small elliptical loop (Fig. V.6a). Initially, the
driving forces (the lowermost set of points in Fig. V.6b) acting on the screw segments
(ϕ ∈ {π/2, 3π/2) are considerably higher than those on the edge segments (ϕ ∈ {0, π}).
Later, as the loop reshapes into an ellipse (the edge segments are perpendicular to the
major axis of the ellipse), the local curvature at the edge segments is higher than at the
screw segments. The driving forces acting on the edge segment thus grow faster than
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Table V.1: Parameters of the simulation.

µ 0.8 · 1011 Nm−2 shear modulus
ν 0.3 Poisson ratio

D0 2 · 10−4 m2s−1 diffusion factor for zero Q
Q 240 kJ mol−1 activation energy of self-diffusion
T 873 K temperature of simulate process
Ω (3.5 · 10−10 m)3 atomic volume
b (2, 0, 0) · 10−10 m Burgers vector
R 500 nm initial dislocation loop radius
N 40 # of nodes of the approximating polygon
∆t 3 s initial time step
∆t 〈0.03, 5.00〉 s time step range

in the case of screw segments (see the uppermost points in Fig. V.6b). The Figs. V.6c
and d show, in a logarithmic scale, the force contribution from all of the segments upon
two segments with prevailing screw character. It is obvious, that the major contribu-
tion comes from the nearest neighbours. Again, the forces are growing as the loop is
shrinking.

The stability of the simulation for a particular dislocation strongly depends not only
on the dislocation line geometry, but also on the discretisation and the integration time
step. A set of simulations was performed to demonstrate these dependencies. These
simulations started with the same parameters (Table V.1) except the number of seg-
ments, which was, respectively, 20, 40 and 80 in the simulation 1, 2 and 3. The forces on
segments in the first 3 iterations are plotted in Fig. V.7. Again, the forces acting upon
screw segments are higher than the forces acting upon the edge segments. However, it
can be seen that the forces quickly start to oscillate, if the discretisation is too fine for the
particular time step (∆t = 3 s).

V.5.2 Force analysis

As a benchmark calculation, a force analysis was performed for a single circular dislo-
cation loop in the plane Z = 0 with radius R and a center at point [0, 0, 0]. Material
parameters and the temperature are the same as in the preceding benchmark (see the
Table V.1). The loop radius R and the number of segments N differs from the preceding
calculation:

R =
R0

k
, R0 = 1000 nm, k ∈ {1, 2, 4, . . . , 32}

N = l N0, N0 = 40, l ∈ {1, 1.5, 2, 4, 8, 12, 16}.

For given radius R and number of segments N, the initial segment length L is

L = 2R sin
π

N
≈ 2πR

N
. (V.17)

The Fig. V.8 shows that the edge segments at ϕ ∈ {0, π} are acted on by a lower
force than the screw segments at ϕ ∈ {π/2, 3π/2}. Furthermore, the force magnitude
depends also on the segment length. A loop composed of shorter segments exhibits
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Chapter V: Fundamentals of the model

stronger self-stress. The forces depend also on the loop radius (Fig. V.9). We see that
smaller loops have stronger self-stress than greater loops, because the distance between
all the interacting segments is smaller.

R

δ

Figure V.10: An arc of length δR
(dotted line), originally discretised
with 3 segments (solid line) is re-
placed with 2m + 1 segments (thick
grey dashed line). Here m = 2.

Another benchmark calculation was focused
on local stress contributions for an arc of length
δR, where δ = 2π 3

N . This arc is a part of a cir-
cular dislocation loop with N segments described
above. Initially, the arc is discretised with three
dislocation segments of the same length corre-
sponding to the number N. The arc discretisation
is then consecutively refined to 2m + 1 segments,
where m ∈ {1, 2, . . . , 8}. The arc is depicted in Fig.
V.10.

A part of the driving force acting on the central
arc segment due to interactions with all segments
remaining inside the arc is calculated for different
count of segments N and for several rediscretisa-
tions m of the arc. In every calculation, the central
segment has 2m neighbours along the arc, which
contribute to the total driving force. Such calcula-
tion is performed for all m-multiplets of segments
along the initial circular loop. The results are sum-
marized in Fig. V.11a. Like in the plots in Fig. V.7 and V.8, these contributions are higher
for the screw segments (ϕ ∈ {π/2, 3π/2}) than for the edge segments (ϕ ∈ {0, π}).
However, the magnitude of the force contribution exhibits only a weak dependence of
the segment length L (on the initial discretisation of the loop N). On the other hand, a
higher number of neighbours along the arc leads again to an increase of the force con-
tribution. This is readable from the plots in Fig. V.11b, where δ is constant (i.e. N is
constant), but the number of neighbouring segments 2m changes – it is inversely pro-
portional to L on the horizontal axis in the plot in Fig. V.11b.

V.5.3 Self-stress of the dislocation loop

The first simulation addressed a contraction of a single circular dislocation loop driven
by its self-stress. At first we focus on results with constant time integration step. The
segment force approximation has been used. The simulation is stable in the first iter-
ations, but as the self-forces increase with decreasing loop dimensions, the simulation
starts to oscillate and finally breaks up at the regions of high curvature. The results are
presented in Fig. V.12. The outer loop is the initial configuration, the inner loop shows
the last stable iteration. Total time is t = 90.3 s.

The second simulation was performed with a variable time step ∆t ∈ 〈0.03, 5.00〉 s
with max. integration error ρmax = 0.12, see Eq. (V.13). The speedup factor was t↑ = 1.2
and slowdown factor was t↓ = 0.5. The results are shown at the Fig. V.13. The last
iteration approaches the result of the simulation with the shortest constant time step,
but the simulation required about 30 times less iterations to finish. However, the total
time of the process increased by about 21%.
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Figure V.12: Loop contraction with a constant time step.
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Figure V.13: Loop contraction with a variable time step.

V.5.4 Frank-Read source

The third benchmark simulation dealt with the operation of Frank-Read source and was
performed with nodal forces. Initial configuration was a straight dislocation line pinned
at points [0,−100, 0] nm and [0, 100, 0] nm equidistantly divided into 25 segments. Ex-
ternal stresses of values σxz ∈ {10, 100}MPa were considered. The time integration step
was set to ∆t = 0.5 s. The other input parameters are the same as in the Table V.1.
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Figure V.14: Frank-Read source.
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V.5. Benchmarks (I.)

The results are shown in Fig. V.14. The left picture presents the simulation with the
applied stress of 10 MPa, which is lower than the critical stress required for the source
operation. Therefore, the source cannot produce new dislocations (note that the left
picture is scaled, the original aspect ratio is very narrow – 7:100). The applied stress
of 100 MPa is above the critical stress and the source generates dislocation loops by
pivoting around the two anchoring points.
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VI. MODELLING OF COMPLEX

DISLOCATION STRUCTURES

VI.1 Segment structure and its representation by graphs

VI.1.1 Motivation

Considering the benchmarks described in the section V.5, the system of dislocation seg-
ments represented a single dislocation loop, a curved dislocation line pinned at its end-
points (a Frank-Read source) or a single dislocation line connecting two points at a crys-
tal surface. Such simple systems can be represented by an array of nodes, where every
node in the array is connected by a segment with its neighbours. The number of seg-
ments is the same as the number of nodes for a dislocation loop or minus one for a
Frank-Read source. In these special cases, the numerical implementation requires only
information about exactly one node and one segment. This approach reduces memory
costs of the simulation code.

Even if this representation can be applied also to systems consisting of several dislo-
cation lines, an implementation of topological changes triggered by dislocation reactions
would be rather difficult. As a remedy to this problem, a representation based on the
graph theory has been applied.

Graph representation

An ideal representation of general dislocation structures is a graph G defined as

G = {V , E}, (VI.1)

where V = {vi} is a set of vertices and E = {ei} is a set of edges. An edge ei =
[ai , bi], ai, bi ∈ N is an (ordered) pair of values labelling particular vertices connected by
the edge. The order of the values denotes the edge direction from the vertex vai to vbi

.
Such edge is called directed and can be traversed only in the denoted direction. If the pair
is unordered, the edge is undirected, allowing the traversal in both directions. A graph
consisting of directed edges only is called a directed graph, whereas the opposite is an
undirected graph. A mixed graph has both directed and undirected edges. If two vertices
in the graph are connected by more than one edge, the graph is called a multigraph.
Further details can be found in [54] or in any textbook about discrete mathematics.

The graph implementation in the presented model builds upon directed graphs. The
dislocation structure is considered as a special case of a multigraph, where every disloca-
tion segment is represented by two edges in both directions. This approach allows a fast
assessment of a particular vertex and its neighbourhood just by listing all edges directed
from the vertex.

An example of a dislocation structure represented by a graph is in Fig. VI.1. The
initial configuration is a dislocation loop (Fig. VI.1a), which encounters several precipi-
tates during its contraction (Fig. VI.5 shows an actual simulation). The loop encircles the
precipitates and the opposite sections of the loop annihilate, leaving dislocation loops
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VI.2. Segment mobility and force decomposition

at the precipitates and a remaining loop, which contracts until it annihilates (Fig. VI.1b).
The annihilation of the opposite loop sections changes the topology of the system. In
the graph structure, this means, that the set of vertices V does not change, but some of
the edges are removed from the set E and new edges are added to the set.

a) Initial
configuration.

b) A state after loop
contraction.

Figure VI.1: A dislocation loop in the field of particles: a) initial configuration, b) a state
before the annihilation of the remaining loop.

The graph approach is advantageous for any situation, where the system topology
changes, because the underlying data structures are not dependent on the particular
topology of the dislocation system.

VI.2 Segment mobility and force decomposition

VI.2.1 Force decomposition with respect to a glide plane

The Peach-Koehler force is determined by relation (IV.45), i.e.

F

L
= (b · σ̂)× ξ,

where b is the Burgers vector and ξ is a unit tangent vector The glide plane normal is
determined by a b× ξ cross product:

n =
b× ξ

|b× ξ| . (VI.2)

For a screw dislocation line, the Burgers vector is parallel to the line, which gives a zero
normal in the formula (VI.2). This corresponds to a fact that a screw dislocation has no
determined glide plane.

The decomposition is based on a projection of the driving force to the glide plane
and perpendicular to it (equations (IV.47) and (IV.46)):

FC = (F · n) n, FG = F − FG. (VI.3)

These components are used to compute contributions to the dislocation segment veloc-
ity:

vC = BFC, vG = AFC. (VI.4)
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Chapter VI: Modelling of complex dislocation structures

The total velocity is a sum of these components:

v = vG + vC. (VI.5)

The prefactors for the driving force component are described in the section V.2. We recall
the relation between the glide prefactor A and the climb prefactor B is A = 10B. This
decomposition was used for the calculations mentioned above, but these involved only
the glide motion of the dislocations.

VI.2.2 Stress tensor decomposition

The drawback of the decomposition mentioned above is that a relation of a pure screw
segment with its mixed-character neighbours is completely neglected. The screw seg-
ments cannot glide in arbitrary slip planes, as their motion is constrained by their neigh-
bours. To remedy this issue, an attempt was made to compute the climb component of
the driving force using the diagonal terms of the stress tensor and the glide component
using the off-diagonal terms of the stress tensor.

σH
ij =

{
σij⇔ i = j,

0⇔ i 6= j,

σS
ij =

{
0⇔ i = j,

σij⇔ i 6= j,

FC = (b · σ̂H)× ξ,
FG = (b · σ̂S)× ξ,

v = AFG + BFC. (VI.6)

The advantage of this approach is that the simulation program can easily switch be-
tween these two approaches to the force decomposition with no further changes to the
code. The velocity components are thus computed using the relations (VI.4) a (VI.5).

VI.2.3 Force decomposition with respect to crystallographic slip planes

The implementations discussed so far do not take into account the fact that a mobility
of a dislocation segment is related to the underlying crystallography. The fast glide
can occur only in crystallographic planes of the material. Otherwise, only non-compact
glide or climb due to diffusion is possible. Both these processes are much slower than
the glide in crystallographic planes.

The following method takes the effect of the crystallography into account. It is de-
rived from the former method described in the section VI.2.1. At first, the unit normal
vector n of the slip plane of the segment is determined by the relation (VI.2). Then the
driving force is decomposed by the relation (VI.3). If the particular slip plane n corre-
sponds to any crystallographic plane from a set NK, i.e.

|arccos n · nk| ≤ 1◦, nk ∈ NK, (VI.7)

following decomposition is used:

FG2 = (FG · nk) nk, FG1 = FG − FG2 . (VI.8)
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VI.2. Segment mobility and force decomposition

The component FG1 corresponds to the glide in a crystallographic plane with normal
vector nk, whereas the component FG2 is responsible for the non-compact glide. In a
particular calculation, this component is nonzero only due to rounding errors. The com-
ponent FC is the climb component of the driving force, like in section VI.2.1.

If there is no nk fulfilling the relation (VI.7), the decomposition changes this way:

FG1 = 0, FG2 = FG. (VI.9)

In this case there is no glide in any of the crystallographic planes, thus FG1 is zero. The
component lying in the slip plane of the particular segment corresponds to the non-
compact glide FG2 .

Finally, the segment velocity is computed according to the relations (V.7) and (V.9):

vG1 = A1FG1 , vG2 = A2FG2 , vC = BFC. (VI.10)

The prefactors follow the ideas mentioned in sections V.2 and VI.2.1. The prefactor B is
the same as in the relation for the climb velocity V.7 and the A1 and A2 are scaled glide
prefactors. The crystallographic glide is set to A1 = 10B like in the former paragraphs.
The non-compact glide is slow, so we set it to a value of the same order as the climb
prefactor, usually A2 = B or A2 = 2B.

The total velocity of the segment is the sum of the individual velocity contributions:

v = vG1 + vG2 + vC. (VI.11)

VI.2.4 Force decomposition with respect to crystallographic slip planes

and components of the Burgers vector

Here, the driving force is computed separately for two segments composing the overall
dislocation segment, which generally may exhibit a mixed character. Thus the Burgers
vector of a general mixed segment is first decomposed into its edge be and screw bs
parts:

b = be + bs, bs = (b · ξ)ξ, be = ξ × b× ξ

|b× ξ| = b− bs (VI.12)

Next, the Peach-Koehler forces are computed as

Fe = (be · σ̂)× ξ, Fs = (bs · σ̂)× ξ, (VI.13)

following the relation (IV.45).
Also this method takes into account the effect of the crystallography on the disloca-

tion mobility. Again, the unit normal vector n of the slip plane of the segment is com-
puted by the relation (VI.2). A crystallography plane nk ∈ NK is found by the criterion
(VI.7), if possible.

The edge Fe and screw component Fs of the Peach-Koehler forces are analyzed sep-
arately.

We introduce a mobility function β(b):

β(b) =
DsΩ

b2kT
, (VI.14)

which corresponds to the diffusion processes. (See section V.2 and the relation (V.7).)
The b is the length of the Burgers vector or its component.
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Chapter VI: Modelling of complex dislocation structures

• The screw component Fs.

The segment lies in a crystallographic plane, but the Fs does not, or vice versa.

The segment motion is not in a crystallographic plane – a non-compact glide.
The condition:

[ξ · nk = 0∧ Fs · nk 6= 0] ∨ [ξ · nk 6= 0∧ Fs · nk = 0]. (VI.15)

We set a prefactor
As = anc β(|bs|). (VI.16)

The segment and Fs lie in a crystallography plane. The segment motion is in a
crystallographic plane. The condition:

ξ · nk = 0 ∧ Fs · nk = 0 (VI.17)

We set a prefactor
As = ag β(|bs|). (VI.18)

• The edge component Fe is decomposed into a glide component Fe,G and a climb
component Fe,G using the relation (VI.3).

The slip plane n corresponds to the crystallographic plane nk. The condition is

n ≡ nk. (VI.19)

The prefactors are

Ae,G = ag β(|be|), Ae,C = β(|be|). (VI.20)

The slip plane does not correspond to any crystallographic plane. The condition:

n 6= nk. (VI.21)

The prefactors are

Ae,G = anc β(|be|), Ae,C = β(|be|). (VI.22)

The scaling factors are ag = 10 for the glide in a crystallographic plane and 1 ≤ anc ≤
ag for the non-compact glide.

Finally, the total dislocation segment velocity is

v =

(
bs

b

)2

AsFs +

(
be

b

)2

(Ae,GFe,G + Ae,CFe,C) . (VI.23)

VI.3 Interactions between dislocations and precipitates

The mobile dislocation lines can encounter an obstacle – a particle of a secondary phase
(precipitate) in the crystal. If the crystalline structure of the particle does not correspond
to the crystal lattice of the surrounding material (a matrix), the boundary between the
matrix and the secondary phase impedes the dislocation motion. If the lattice planes
of the matrix and the secondary phase are in a complete register, the secondary phase
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VI.3. Interactions between dislocations and precipitates

is coherent with the matrix. When the register is not perfect, the boundary between the
materials is semicoherent and can be described by a dislocation arrangement. This situa-
tion happens if the lattice parameters of the two phases are about the same order. In the
opposite case, the secondary phase is incoherent. In the case of coherent or semicoherent
precipitates, the dislocations can under special circumstances pass through the bound-
ary between a matrix and the precipitate. On the other hand, the incoherent precipitates
are impenetrable and are considered rigid. The presented model is focused on the latter
case.

In the present model, the interactions between a dislocation line and a precipitate
are analyzed on the level of individual dislocation segments. Boundary conditions at
the particle-matrix interface do not allow dislocation lines to enter the interior of the
particle. The numerical implementation thus must care about this constraint and check,
whether the straight segments do not cross the particle surface.

In a general case, the endpoints of a single straight segment before and after a dis-
placement are situated in the vertices of a tetrahedron. If we take infinitesimal time
steps, the moving segment will sweep along a curved surface. As it would be rather dif-
ficult to compute an intersection of the swept curved surface and the particle surface, we
approximate the area swept in a single integration step by a rectangle, i.e. the endpoints
during the single iteration lie in a single plane. This approximation does not prevent
the segments from rotation, as both techniques for determining the coordinates for the
next integration step allow the dislocation segments to rotate (see section V.4). In what
follows, we focus on spherical precipitates only.

VI.3.1 Intersection of a sphere and a plane

Let’s have a plane with the following parametrisation:

P = {P|P = P′0 + sv1 + tv2, s, t ∈ R}. (VI.24)

The plane equation is

ax + by + cz = d, n = (a, b, c), n =
v1 × v2

|v1 × v2|
, |n| = 1, d = n · P′0, (VI.25)

where the vector P′0 denotes the position of the point P′0. A distance of a point X from
the plane P can be computed by a relation

dX = |n · X − d|. (VI.26)

If there is a sphere with radius r in the coordinate origin, we substitute X = (0, 0, 0)
into (VI.26). The intersection of the sphere and the plane must correspond to one of the
following conditions:

|d| > r → a plane and a sphere have no common point
|d| = r → a plane and a sphere have a single point of contact [da, db, dc],
|d| < r → a circle with a center at K′0 = (da, db, dc) and a radius R =

√
r2−d2.

Now we consider a sphere not centered at the coordinate origin (i.e. at [0, 0, 0]), but in
an arbitrary point S. To calculate an intersection with a plane, which contains a point
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Chapter VI: Modelling of complex dislocation structures

P0, we introduce a coordinate system with an origin at S. The position vectors in this
coordinate system are denoted by a prime throughout this paragraph. The position of
the point P0 in this coordinate system is determined by a vector P′0 = P0− S. The vector
P′0 is substituted into into (VI.25).

The interesting case is an intersection of the plane and a sphere – an intersection
circle K. The circle lies in the plane P and the points along the circle fulfil the plane
parametrisation. If we take two orthonormal vectors f 1 and f 2, we can parametrise the
circle as1

K = {K|K = K0 + s f 1 + t f 2, s = R cos ϕ, t = R sin ϕ, ϕ ∈ 〈0, 2π〉}. (VI.27)

In the plane P defined by (VI.24) the vectors f 1 and f 2 are

f 1 =
v1

|v1|
, f 2 =

n× v1

|n× v1|
. (VI.28)

The remaining step is to find the circle center in the unprimed coordinates:

K0 = K′0 + S. (VI.29)

Now we have a relation for the circle as an intersection of a plane and a sphere. The
plane is determined by a vertex before and after the displacement and its neighbouring
vertex (for the nodal forces), or by the dislocation segment and its displacement vector
(for the segment forces). Now we will calculate the maximum displacement, which
won’t make the segment intersect the particle surface. To compute this, we need to find
a tangent to the intersection circle parametrised in the preceding paragraph.

A tangent of a circle K parametrised by (VI.27) at a point parametrised by ϕ0 fulfils
a parametric equation of a straight line:

Tϕ0 = {T|T = T0 + uvϕ0 , u ∈ R} (VI.30)

Let the point of contact corresponds to u = 0, therefore T0 = K(ϕ0). The tangent
direction vector is determined by a derivation of a curve at the given point, so we have

vϕ0 =
dK(ϕ)

dϕ

∣
∣
∣
∣

ϕ0

= (−R sin ϕ0) f 1 + (R cos ϕ0) f 2. (VI.31)

Without losing generality, we can replace it with a unit vector:

nϕ0 = (− sin ϕ0) f 1 + (cos ϕ0) f 2. (VI.32)

From the orthonormality of f 1 a f 2 follows:

f 1 · nϕ0 = − sin ϕ0
f 2 · nϕ0 = cos ϕ0

⇒ ϕ0 = − arctg
f 1 · nϕ0

f 2 · nϕ0

+ kπ, k ∈ {0, 1}. (VI.33)

The equation (VI.33) has two solutions, as there are two tangents parallel to vϕ0 at two
distinct points of contact.

The angle ϕ0 determines the point of contact and the tangent direction vector, which
we already know. So we only need to find the points of contact, thence we do not need
to know ϕ0. As the points of contact are symmetric with respect to the circle center, we
obtain the following relation:

T0 = K0 + (±R cos ϕ0) f 1 + (±R sin ϕ0) f 2 = K0 + (±R f 2 · nϕ0) f 1 + (∓R f 1 · nϕ0) f 2.
(VI.34)

1This parametrisation is frequently used in two dimensional space with f 1 = (1, 0) and f 2 = (0, 1).
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PSfrag A1 B1S1

A2 B2

PA = S2TA

PBTB

A′2 B′2S′2
Figure VI.2: A contact between a segment and a particle.

VI.3.2 Contact of the dislocation line with the particle

An example configuration of a dislocation line segment approaching a spherical par-
ticle is shown in Fig. VI.2. If there was no particle, the driving force would displace
the segment2 A1B1 to the position A′2B′2. If neither the vertices nor the segment AB is
allowed to enter the particle, we consider a plane determined by A1, B1, A′2, or vectors
ξ = (B1 − A1)/|(B1 − A1)| and ∆R = S′2 − S1. We assume that, after the reconnection
of the segment system (see section V.4), the segment center will displace only slightly
from this plane. A necessary condition of the line-particle contact is an existence of an
intersection between the plane and the sphere representing the particle.

If there is an intersection – a circle K, we need to find the tangents to K, which are
parallel with the segment AB. The choice of geometry guarantees, that each of these
tangents has an intersection with a straight line S1S′2. We denote these intersections by
the symbols PA and PB in Fig. VI.2. Then we distinguish following cases concerning the
tangents parallel to the given dislocation segment AB and the intersections PA and PB:

1. Both intersections lie on the ray S′2S1, but do not lie on the segment S′2S1.
The dislocation line moves away from the particle, no contact will occur.

2. One intersection lies on the ray S′2S1 but not on the segment S′2S1, another lies on the ray
and the segment S1S′2.
The dislocation line has entered the particle interior. This case is forbidden by the
boundary conditions.

3. Both intersections lie on the ray S1S′2, at least one of them lies on the segment S1S′2.
The line will get into contact with the particle. One of the intersection points PA
and PB, which is nearer to S1, corresponds to S2, which is the center of the displaced
segment stopped at the particle surface.

2Here we introduce a short-hand notation for line segments, rays and straight lines, which can be
parametrised by two points A and B:

X = A(1− t) + Bt. (VI.35)

For a segment AB, we set t ∈ 〈0, 1〉. For a ray AB, we set t ∈ 〈0, ∞〉, i.e. the ray starts at the point A. For a
straight line AB the parameter is t ∈ R. A similar notation is used also for polygonal chains, e.g. ABCD
is a polygonal chain built from segments AB, BC and CD starting at A and ending in D. This notation is
used also in section I.2.
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4. Both intersections lie on the ray S1S′2, but none of them lie on the segment S1S′2.
The line will not get into contact with the particle in the current integration step.

When a dislocation gets into contact with a particle (Fig. VI.3a), the interaction with
the particles cannot be analyzed using the algorithm mentioned above. The driving
forces usually do not change too much from one iteration to another. Thus we can sup-
pose, that the driving force acting on a segment stopped at the particle will be directed
also inside the particle in the next iteration. This would make any further movement of
the dislocation segment impossible. Thus a different approach is necessary to solve this
problem.

a) b) c)

bbb

X0

X0

X0

X1

X ′1 F
F

FG

FG

FC
FC

Figure VI.3: A contact with a particle: a) initial contact, b) segment blocked on the par-
ticle boundary, force splitting, c) partial displacements: glide, climb and glide.

In such situations, the driving force is decomposed to a glide component FG and a
climb component FC, e.g. according to the relations (IV.46) and (IV.47) (see section IV.4).
Note that if the decomposition based on the components of the Burgers vector is used
(see section VI.2.4), then the force components Fe and Fs are instead a subject of the
analysis.

X

Y

Z

b

R

d

Figure VI.4: A dislocation loop and
4 particles.

This decomposition is shown in Fig. VI.3b. As
it can be seen from the figure, we suppose that
at least one of the components may be directed
outside of the precipitate. In such a case, we take
the algorithm mentioned above, but it is applied
for displacements calculated from the individual
components of the driving force. As it is gener-
ally undefined, which component should be con-
sidered first, the program displaces the segment
at first by the glide component, secondly a dis-
placement by climb component follows, and fi-
nally the displacement by the glide component is
repeated if the initial glide displacement was hin-
dered by the particle. The mechanism of the dis-
placement along the particle surface is illustrated
in Fig. VI.3c.
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VI.4 A single loop with particles – planar simulation

The extended model, now comprising the dislocation-particle interaction, was applied
to a self-contraction of a single dislocation loop (like in Fig. V.5), in a field of 4 spherical
particles, see Fig. VI.4. The simulation parameters were the same as in the previous case
and are summarized in the Table VI.1.Unless otherwise stated, all further mentioned
simulations have been performed with the forces acting upon segments.

Table VI.1: Parameters of the simulation.

µ 0.8 · 1011 Nm−2 shear modulus
ν 0.3 Poisson ratio

D0 2 · 10−4 m2s−1 diffusion factor for zero Q
Q 240 kJ mol−1 activation energy of self-diffusion
T 873 K temperature
Ω (3.5 · 10−10 m)3 atomic volume
b (2, 0, 0) · 10−10 m Burgers vector
R 500 nm initial dislocation loop radius
N 40 # of nodes of the approximating polygon
∆t 3 s initial time step

d {50, 100, 200, 225} nm diameters of spherical particles
e 425 nm− d/2 particle eccentricity

ci {[±e, 0]; [0,±e]} coordinates of particle centers
λ
√

2e interparticle distance

VI.4.1 Results

The simulation was performed for 4 different particle diameters. The results are pre-
sented in Fig. VI.5. Obviously, the results show many numerical artifacts, which mostly
come from the absence of a remeshing procedure. A detailed discussion of this issue is
presented later in section VI.7. The long segments cannot properly encircle the spheri-
cal precipitates and that leads to the unsatisfactory results for small particle diameters
(d ∈ {50, 100} nm). On the other hand, these results show, that the self-stress driven
loop contraction takes place even in the particle field. However, the distance λ− d must
be large enough, so that the parts of the dislocation loop can bow-out and pass by the
particles. In case of bigger particles, i.e. d ∈ {200, 225} nm, the interparticle gate λ− d is
rather short and the system remains in an equilibrium state, whereas the smaller parti-
cles with larger gates λ− d allow the system to undergo an annihilation process3 leaving
four loops on the matrix-particle interfaces.

VI.5 Two dislocation loops with particles – 3D motion

The results of the planar loop simulations provided a motivation to investigate the in-
fluence of the time integration step also for the 3D simulations. To facilitate a com-
parison with the former calculations, very similar simulation parameters have been

3It will be described later in section VI.8.
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Figure VI.5: A contraction of a single dislocation loop in a field of spherical particles for
N = 40 segments and a particle diameter d: a) 50, b) 100, c) 200 and d) 225 nm.

Table VI.2: Parameters of the 3D simulation. See also Table VI.1.
R 1500 nm initial dislocation loop radius
N {40; 80; 120; 160} # of nodes of the approximating polygon
∆t {6.00; 0.60; 0.06; 0.01} s initial time step

d 600 nm spherical particle diameters
e 1150 nm particle eccentricity
h 100 nm initial loop distance
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VI.5. Two dislocation loops with particles – 3D motion

used (see V.5 and VI.4), with the stress-tensor decomposition based relations for the
dislocation segment mobility (see VI.2.2). The number of the particles and their loca-
tion were the same. Several fixed time integration steps and discretisations were used:
∆t ∈ {6.00; 0.60; 0.06; 0.01}s and N ∈ {40; 80; 120; 160}. Neither any remeshing tech-
nique nor a time step adjustment was used in these simulations. The simulation param-
eters are summarized in Table VI.2, the remaining parameters are the same as in Table
VI.1.
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c) 138 steps.
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Figure VI.6: 2D projections of an upper dislocation loop during its evolution with ∆t =
6 s and different mesh density: a) N = 40, b) N = 80 and c) N = 120 segments.
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Chapter VI: Modelling of complex dislocation structures

The results of the simulations with a time step ∆t = 6 s are shown in Fig. VI.6. The
Fig. VI.6a (N = 40) clearly illustrates artifacts connected with the very coarse discretisa-
tion of the loop. The next Fig. VI.6b shows that even a finer discretisation with N = 80
is not sufficient. Only the discretisation with N = 120 offered plausible smooth curves
during the major part of the simulation. However, the time step ∆t = 6 s is too coarse.

a) 16100 steps.
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b) 82000 steps.
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c) 12000 steps.
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Figure VI.7: 2D projections of an upper dislocation loop during its evolution with a)
∆t = 0.06 s and N = 120, b) ∆t = 0.01 s and N = 120, c) ∆t = 0.06 s and N = 160.

Results for finer time steps with discretisation N = 120 are presented in Fig. VI.7a
and b. The results show that the sharp spikes almost disappeared when the time step
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was shortened by two orders of magnitude to ∆t = 0.06 s. Also a simulation with
∆t = 0.01 s was run for comparison. However, the six times shorter time step was
not so advantageous while keeping the same discretisation. A single calculation with
even finer discretisation N = 160 is illustrated in Fig. VI.7c. The results show smooth
dislocation curves. The evolution is stopped just before the annihilation of dislocation
line segments encircling the particles, as the annihilation technique had not yet been
developed at the time of these simulations.

VI.6 Symmetry (I.)

As the time integration step decreases, the number of iterations inevitably rises and the
overall accuracy of the simulation decreases due to a cumulation of rounding errors. The
analysis of the results shows that the shapes of the dislocation loops in later iterations
do not correspond to the physical symmetry of the system. The planar simulations with
a single loop were not much influenced by the rounding errors. Consequently, the loss
of symmetry with respect to the planes X = 0 and Y = 0 is hardly visible even with
large magnifications. On the other hand, the 3D simulations are more sensitive and the
artifacts coming from rounding errors are visible even without magnification.

The loss of symmetry is associated with the rounding errors during the summation of
the stress fields or driving forces. It is obvious that with a rising number of computation
steps these errors grow and negatively influence the results. It is very likely that these
problems would cause instabilities during more complex simulations.

A symmetry break-up caused by the rounding errors was eliminated when a unit
cell technique was employed. This technique allows to reproduce the whole system by
the elementary cell and symmetry operations. For the case of the planar simulations,
the elementary cell is the 1st quadrant, for the 3D simulations, the elementary cell is
the 1st octant of the system. The initial implementation only transformed the segment
coordinates from the elementary cell to the rest of the system. This approach proved
to be working and reliably preventing the simulations from failure due to this kind of
computational errors. The results were slightly different from the previous simulations
without the symmetry transformations. A drawback of this approach is a less-efficient
algorithm – the symmetry of the simulated system was not used to reduce the memory
consumption and time complexity (the time complexity even slightly increased due to
the transformation of the coordinates from the elementary cell – a quadrant or an octant).

VI.6.1 Advanced representation of symmetric systems

An analysis of the interactions between individual segments showed that the corre-
sponding forces reflect the physical symmetry of the system. Thus the whole system
can be represented by an elementary cell, which can be mirrored to the whole system
by the symmetry operations. Accordingly, the calculation of forces acting upon any dis-
location segment can be based only on the dislocation segments from the elementary
cell. As a result, it is necessary to retain only the elementary system in the computer
memory, which considerably decreases the memory costs of simulation. Besides that,
all operations need to be performed only for the segments in the elementary cell, which
thus reduces also the computation time.

76



Chapter VI: Modelling of complex dislocation structures

Now we recall the calculation of the total stress field at the center of a jth segment at
a position Rj:

σ̂j =
n

∑
i=1,i 6=j

T̂iσ̃(T̂
−1
i Rj,i, Li)T̂

−1
i , Ri,j = Ri − Rj. (VI.36)

Here T̂i is a transformation from a local coordinate system (x, y, z) to the global coordi-
nates (X, Y, Z) and σ̃ is the stress tensor around a straight segment of dislocation ori-
ented along a z axis (local), which is determined by a Peach-Koehler formula (IV.37).

The stress field σ̂j at the center Rj causes a Peach-Koehler force upon the jth segment
determined by the relation

F j = (b · σ̂j)× ξ j. (VI.37)

Because the cross product as well as the matrix multiplication are linear functions
of their arguments, we can change the summation by the index i and rearrange the
Peach-Koehler force upon the jth segment as a sum of forces from individual dislocation
segments:

F j =
n

∑
i=1,i 6=j

F j,i(R j,i, Li), (VI.38)

where the individual contributions are computed as

F j,i(Rj,i, Li) =
[

b ·
(

T̂iσ̃(T̂
−1
i bi, T̂−1

i Rj,i, Li)T̂
−1
i

)]

× ξ j. (VI.39)

This rearrangement of the summation will be used to compute Peach-Koehler forces in
the symmetric system.

1

2

1′

2′
R1′,2 R1,2′

p

Figure VI.8: Calculation of the Peach-Koehler forces in a symmetric system.

We will demonstrate this idea on a system consisting of four dislocation segments
with a planar symmetry (see Fig. VI.8). Two couples of segments 1, 1′ and 2, 2′ are
symmetric with respect to the plane p. A force, which the segment 2 exerts upon a
segment 1′, i.e. F1′,2(R1′,2, L2′) is a mirror image of the force, which the segment 2′ exerts
upon the segment 1, i.e. F1,2′(R1,2′ , L2). The plane of symmetry is p. A general force
contribution exerted by a primed segment upon an unprimed segment is computed
according to following relation

F j,i′(Rj,i′, Li) = sgn(Ẑ′) Ẑ
′−1
L

{[

b·
(

T̂iσ̃(T̂
−1
i Rj′,i, Li)T̂

−1
i

)]

×
(

Ẑ′Lξ j

)}

, Rj′,i = Ẑ′Rj−Ri.
(VI.40)

The symbol Ẑ′ denotes an affine transformation, which transforms an unprimed seg-
ment or vector upon a primed segment or vector. It’s linear component is denoted by
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VI.6. Symmetry (I.)

Ẑ′L. Note that some transformations, such as the reflection, invert the sense of the dislo-
cation line, which inverts the sense of the resulting force contribution. This is corrected
by the term sgn(Ẑ′), which is negative in such cases. This general relation is also used
for a translational symmetry, see section VI.9.

If we have, for example, a single dislocation loop with the parameters mentioned
in Table VI.4, we will have a planar problem with a four-fold symmetry. This kind of
symmetry can be expressed also as a reflectional symmetry with two planes (axes). We
choose the first quadrant (X, Y ≥ 0) and the symmetry operations will be reflections
with planes X = 0 and Y = 0. The total number of segments in the system is N = 40, so
there will be n = N/4 = 10 segments in the elementary cell. The segments reflected by
the plane X = 0 will be denoted by a prime, segments reflected by the plane Y = 0 will
be denoted by two primes and the segments reflected by both planes will be denoted by
three primes (these also have an axial symmetry (Z axis) with the elementary cell).

To compute a total force acting upon, for example, the segment 1, which is F1,
we sum all force contributions from the segments in the elementary cell at first, i.e.
F1,j(R1,j, Lj), j ∈ {2 . . . n}. Further we add the contributions from the primed segments,
i.e. F1,j′(R1,j′ , Lj′), j′ ∈ {1′ . . . n′}, which are computed using a transformation of the
force F1′,j(R1′,j, Lj), j ∈ {1 . . . n} and an appropriate symmetry operation. The same
approach is used also for the two-primed and three-primed segments.

VI.6.2 2D simulations with symmetry

The real situation is slightly simplified in the preceding paragraph. The parameters in
the section VI.4 (Table VI.1) are set in a such way, that there are two edge segments par-
allel to the Y axis, whose centers lie in the plane Y = 0, and two screw segments parallel
to the X axis with centers lying in the plane X = 0. To perform the calculation with the
symmetry techniques mentioned in the former paragraph, each of these segments has to
be divided into two subsegments. Thus in the first quadrant there will be one half of an
edge segment and one half of a screw segment. The system will not have 40 segments,
but N = 44 segments and there will be n = 11 segments in the first quadrant.

The parameters were set according to the section V.1, only the time step was set
shorter, i.e. ∆t = 0,03 s. The results are shown in Fig. VI.9. The resulting shape of
the dislocation loop in the last step 2945 (t = 88,35 s) is very close to the shape of the
dislocation loops in the last steps of the former simulations displayed in Fig. V.12 and
V.13. The difference between the current simulation and the former ones is that the
current loop shrinks slightly faster. However, this is not surprising – as it is mentioned
in the section V.5.2, shorter segments (here the four divided segments parallel to the
axes X = 0 and Y = 0) cause higher driving forces, which leads to higher velocities of
the segments and faster evolution of the system. It is also possible to run the original
simulation with the segments parallel to the axes X = 0 and Y = 0 artificially divided
– this will also make the shrinking process faster and will almost exactly correspond to
the simulation run with the symmetry operations. Here the only difference will be a
slightly faster motion of the centers of the divided segments, as this is not treated in the
numerical implementation.

The symmetrisation is thus an efficient way how to suppress the influence of round-
ing errors and the corresponding break-up of the system symmetry.

78



Chapter VI: Modelling of complex dislocation structures

-400

-200

 0

 200

 400

-400 -200  0  200  400

Y
 [n

m
]

X [nm]

∆t = 0,03 s, every 500th step

Figure VI.9: An evolution of a single dislocation loop with a four-fold symmetry.

VI.7 Remeshing

An important part of the model is a remeshing of the dislocation lines. As the dislocation
line is approximated by a set of short straight segments, this discrete representation
should not differ too much from the smooth dislocation curves, which are observed in
experiments. This can be achieved only by an adaptive remeshing of the dislocation
structure, i.e. by adding, removing and redistributing vertices in the system of straight
segments.

If we recall the first results related to a single dislocation loop (section V.5) and the
results of the simulation with a couple of co-axial dislocation loops (section VI.5), we
see that some of the segments in both simulations became very short. In the latter sim-
ulation, the polygonal chain representing the dislocation lines has formed regions with
very high curvature (i. e. very small acute angles at some vertices). While the very
short segments are physically plausible, these may produce instabilities, or may require
too short time integration steps and this considerably slows down the calculation. On
the other hand, the nonphysical acute angles at the vertices are a result of a too coarse
discretisation, which does not match the smooth dislocation curves. In both cases, it
is necessary to adjust the vertex distribution to make the simulation more stable and
accurate.

VI.7.1 Adding and removing of a single vertex

The simplest technique is to add (Fig. VI.10) or remove (Fig. VI.11) just a single vertex.
During the simulation, the segment length is periodically checked. If the length is out of
predefined range, the program adds or removes a vertex. It is very easy to add a vertex
by dividing a segment into two segments of an equal length. However, evaluating the
Peach-Koehler formula (IV.34) for a case of a pair of dislocation segments lying on a
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straight line gives a zero contribution to the stress field from one segment to the other.
As a result, both segments would perceive almost equal Peach-Koehler forces, so they
would keep their direction for many iterations, making the remeshing less effective,
unless these divided segments come into a contact with a precipitate. Obviously, the
remeshing should consider the local curvature of the dislocation line. This problem will
be discussed further in section VI.7.4.

Figure VI.10: Addition of a single vertex. Figure VI.11: Removal of a single vertex.

The program removes a vertex at the endpoint of a segment and connects the neigh-
bouring vertices with a new segment (Fig. VI.11). To improve the results, the other
endpoint is moved to the center of the original segment.

VI.7.2 Cubic spline interpolation

Real cubic splines

More sophisticated remeshing procedures can employ cubic splines [55]. Let f : 〈t0, tn〉 →
R is a real function we need to interpolate. A cubic spline is a piece-wise polynomial
function S(t) : 〈t0, tn〉 → R. The interval 〈t0, tn〉 consists of n subintervals 〈ti−1, ti〉,
t0 < t1 < . . . < tn, on which cubic polynomials are defined:

S(t) = Si(t) = ait
3 + bit

2 + cit + di ⇔ t ∈ 〈ti−1, ti〉, i ∈ {1, . . . , n}. (VI.41)

The cubic spline parameters {ai, bi, ci, di}, i ∈ {1, . . . , n} are determined by following
conditions:

a) S(ti) = f (ti), i ∈ {0, . . . , n},
b) Si+1(ti) = Si(ti), i ∈ {1, . . . , n− 1},
c) S′i+1(ti) = S′i(ti), i ∈ {1, . . . , n− 1},
d) S′′i+1(ti) = S′′i (ti), i ∈ {1, . . . , n− 1}.

(VI.42)

These conditions give 4n − 2 equations. As we have 4n parameters, two additional
conditions are necessary. The following two give a natural cubic spline:

a) S′′(t0) = 0,
b) S′′(tn) = 0. (VI.43)

The resulting system of linear equations is represented by a tridiagonal matrix, which
can be quickly solved by a Crout method with a time complexity O(n) [55]. This kind

80



Chapter VI: Modelling of complex dislocation structures

of cubic spline is suitable to aperiodic functions. Periodic functions are not represented
properly, as it produces artifacts at the end of the period. For a periodic function f (t0) =
f (tn), it is necessary to employ another pair of conditions:

a) S′(t0) = S′(tn),
b) S′′(t0) = S′′(tn).

(VI.44)

Again, the system of linear equations can be solved with a time complexity O(n).

Cubic splines in three dimensions

Cubic splines introduced in section VI.7.2 can be used to interpolate curves in a 3D
space. Let F : DF → R

3 is a parametric function. The vector function F determines co-
ordinates of the vertices of the polygonal chain. The function domain DF = {t0, . . . , tn}
can be a finite ascending series of natural numbers (this is very suitable for the numeri-
cal implementation of the Crout method), but a cumulative sum of dislocation segment
lengths along the polygonal chain gives a better interpolation of more complex shapes.

The vector function F is interpolated with a vector spline:

S(t) : 〈t0, tn〉 → R
3. (VI.45)

This spline is a parametric function with the following components:

S(t) = [SX(t), SY(t), SZ(t)], (VI.46)

where the components SX(t), SY(t) and SZ(t) are cubic splines defined by the equation
(VI.41) and determined by the conditions (VI.42) and supplemental conditions (VI.43)
for the polygonal chain or (VI.44) for a closed polygon.

Remeshing

The actual remeshing with the spline changes coordinates of most of the vertices. The
ratio of the total length of the original polygonal chain and a predefined optimal seg-
ment length gives a count of new segments m. The cubic spline is evaluated at m + 1
equidistant points, which become new vertices for the next iteration. (In case of a closed
polygon only m points are evaluated.)

VI.7.3 Simulations with remeshing

The simulation with a single dislocation loop (Fig. V.5) was carried out. The parameters
are listed in Table VI.3. The time step was variable between 1 s and 5 s and the dislo-
cation segment length was limited to a range (50, 100) nm. Two remeshing techniques
have been used: the single-vertex approach for the first simulation and the cubic splines
for the second.

The results of the simulation with the single-vertex remeshing are shown in Fig.
VI.12. The simulation starts with a circular loop (the outermost circle) and proceeds
via shrinking stages in which size of the loop decreases due to its self-stress. As the
segments become shorter, some vertices are removed from the system. As can be seen
from the figure, during the final iterations the representation becomes very crude (as
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Table VI.3: Parameters of the simulation.

µ 0.8 · 1011 Nm−2 shear modulus
ν 0.3 Poisson ratio

D0 2 · 10−4 m2s−1 diffusion factor for zero Q
Q 240 kJ mol−1 activation energy of self-diffusion
T 873 K temperature of simulate process
Ω (3.5 · 10−10 m)3 atomic volume
b (2, 0, 0) · 10−10 m Burgers vector
R 500 nm initial dislocation loop radius
N 42 # of nodes of the approximating polygon
∆t 3 s initial time step
∆t 〈1, 5〉 s time step range

t↑ = t↓ 2 time step multiplicators
l (50, 100) nm segment length range
l 75 nm optimal segment length

the minimum allowed length of a dislocation segments has been set to 50 nm). Also
the initial system symmetry is completely lost. This is not caused only by the rounding
errors, it is actually broken by the very first vertex removal.

The next simulation used the cubic spline interpolation for remeshing. The sim-
ulation shows similar evolution of the dislocation line, as can be seen in Fig. VI.13.
The cubic spline representation produces finer discretisation of the dislocation loop for
much more iterations than the single-vertex remeshing. Even the symmetry is retained
for more iterations. In the last iterations, it is even lost and regained again, because
the spline can be well represented even with just a few points. On the other hand, the
symmetry is not perfect, as it is influenced by the rounding errors, and also by the redis-
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Figure VI.12: A simulation with single vertex addition and removal.
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tribution of vertices along the spline, which does not take the symmetry into account.

VI.7.4 Adding and removing of a single vertex – improved method

The single-vertex approach mentioned in section VI.7.1 can be further improved. As
in the already mentioned approach, the new point should be added between two end
points once the segment length exceeds certain limit (see Fig. VI.14). If the particular
segment X1X2 is not in contact with any particle (i.e. it can move freely), a circle C is
fitted to the end points X1, X2 and their nearest neighbours X0, X3. In total, 4 neigh-
bouring vertices are involved. The least-squares method is used to fit a circle to these 4
points. The new vertex is placed at the intersection of the circle C and the straight line
CS12, where S12 is the center of the segment X1X2 and C is the center of the circle C.

It may happen that the segment X1X2 is the ending segment of a polygonal chain, e.g.
there would be no vertex X3. Then it is possible to fit the circle to the points X0, X1, X2
just by solving a set of 3 linear equations.

For a general 3D case, the same approach may be used, but it is necessary to fit a
plane to the particular points (3 points define the plane exactly, 4 points require the
least-squares method) and fit the circle in the particular plane. The vertex removal is
solved by the already mentioned merging of the endpoints of a too short dislocation
line segment.

This remeshing method works the same way for both closed polygons (dislocation
loops) and polygonal chains (dislocation lines). It is also independent of the symmetry
techniques described in section VI.6. It will be used in all simulations presented in the
next sections unless stated otherwise.
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Figure VI.13: A simulation with remeshing based on the cubic spline interpolation.
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Figure VI.14: Fitting a circle to 4 points.

VI.8 Annihilation

VI.8.1 A general approach

Two dislocations will annihilate, if they have the same orientation and their Burgers
vectors have the same magnitude and an opposite direction, or the dislocations have the
same Burgers vector and the opposite orientation. These two situations are equivalent.
An encounter and an annihilation of two edge dislocations is shown in Fig. VI.15 in a
2D projection. An analogous situation may happen for the screw or mixed dislocations,
e.g. for two dislocation curves or for two segments of one dislocation curve.

Figure VI.15: Annihilation of two edge dislocations.

An illustrative example of such situation is a Frank-Read source. Upon activation,
the source before creating the first loop will take a shape similar to Fig. VI.16a. Further
evolution makes parts A and B of the dislocation curve to approach each other up to a
critical distance (Fig. VI.16b). The dashed lines are tangents in the nearest two points
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of the two parts of the curve. The situation at these points is similar to the situation
depicted in Fig. VI.15. The parts of the dislocation curve at this location are going to
annihilate. A dislocation loop is created, which expands away from the source due to
the externally applied stress. The remaining part of the dislocation is quickly recovered
to the initial state by its self-stress as well as the externally applied stress. If the applied
stress is high enough, the whole process can repeat and the Frank-Read source can thus
produce more dislocation loops.

A B

1 2

b

a) The activated source.

A B

b) Two parts of the dislocation
curve approaching each other.

Figure VI.16: A Frank-Read source.

An algorithm for the annihilation

An annihilation of dislocations represented by discrete polygonal lines consisting of
straight segments needs a different description, as the tangents in the two nearest ver-
tices do not correspond to the tangents of the continuous lines. Thus the single criterion
is the critical distance, at which the dislocations annihilate. The algorithm is illustrated
in Fig. VI.17.

A1A1A1

A2A2A2

B1B1B1

B2B2B2

AA BB

CC

DD

Figure VI.17: An annihilation of dislocation curves represented by a polygonal chain.

If two vertices A and B are in a distance shorter than a critical distance of the annihila-
tion, and these vertices are not neighbours to each other, the topology of the dislocation
system is adjusted in a following way. If each of the vertices A and B has exactly two
neighbours A1, A2 and B1, B2, we create two polygonal chains A1BA2 and B1AB2. In
such case it is possible to find two points, where the line segments AB2 and BA2 are
nearest to each other. Let these points are C1 and C2. Similarly, let D1 and D2 are points
where the line segments BA1 and AB1 are nearest to each other. Then C is the centre of a
line segment C1C2 and D is the centre of D1D2. Then we remove sections of the polygo-
nal chains A1AA2 and B1BB2. These sections are replaced by A2CB2 and A1DB1. These
sections are created in a way fitting the direction of the remaining polygonal chains.
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VI.8. Annihilation

Notes on the numerical implementation

Before the carrying out the annihilation, it is necessary to order the segments according
to the Fig. VI.17, so that |A1B1| < |A1B2| and |A2B2| < |A2B1|. If these relations are
not fulfilled, we exchange B1 and B2. Then the segments (A, A1), (A, A2), (B, B1) and
(B, B2) are removed. In the next step, the coordinates of C and D are found, which are
assigned to the vertices A and B (an optimization to re-use the vertex structures). Then
we create new segments (A1, D), (D, B1), (B2, C), (C, A2).

VI.8.2 Planar simulations

The annihilation algorithm described above was tested during the contraction of a single
dislocation loop in a field of four precipitates. The simulation parameters including the
particle positions and diameters were set according to section VI.4 (Tab. VI.1), but the
particle diameter was set to d = 100 nm and the time integration step was selected as
∆t = 30 ms. A simple remeshing approach based only the length of segments was used.
The critical annihilation distance was set to da = 10 nm. The input parameters of the
calculation are summarized in Tab. VI.4.

Table VI.4: Simulation parameters for a single dislocation loop contracting and annihi-
lating in a field of particles.

µ 0.8 · 1011 Nm−2 shear modulus
ν 0.3 Poisson ratio

D0 2 · 10−4 m2s−1 diffusion coefficient for zero Q
Q 240 kJ mol−1 activation energy of self-diffusion
T 873 K temperature
Ω (3.5 · 10−10 m)3 atomic volume
b (2, 0, 0) · 10−10 m Burgers vector
R 500 nm initial dislocation loop radius
N 40 # of segments of the polygon
∆t 0.03 s time step

l 〈30, 120〉 nm segment length
da 10 nm critical distance for annihilation
d 100 nm particle diameters
e 425 nm− d/2 eccentricity of the particles

ci {[±e, 0]; [0,±e]} position of the particle centers
λ
√

2e particle distance

A dislocation loop in a particle field

The simulation is recorded in Fig. VI.18 starting with the outermost loop. The evolution
corresponds to systems depicted in Fig. VI.5 for a diameter d = 100 nm. The major
difference is the time step, which is of two orders smaller than in the former simulations
(∆t = 3 s), which allows to find a configuration of the dislocation loop just before the
annihilation of the branches encircling the particles. After the annihilation, new loops
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∆t = 0,03 s, every 500th step.

Figure VI.18: A contracting dislocation loop and its interaction with spherical particles.

are detached from the original loop at the particles centered on the Y axis. As the con-
traction of the remaining loop continues, the loops around the particles centered at X are
detached later. Finally, the remaining loop in the center of the system would annihilate,
but the system becomes unstable due to the very short dislocation segments. The total
number of iterations was 6773, which corresponds to a simulation time t = 203.19 s.

Frank-Read source

The simulation with a Frank-Read source (section V.5.4) has been performed second
time. The common simulation parameters are listed in Tab. VI.4. The geometry is the
same as in the section V.5.4, i.e. a straight dislocation line pinned at points [0,−100, 0] nm
and [0, 100, 0] nm and equidistantly divided into 25 segments. An external stress σxz =
10 MPa was applied in the first simulation, which converged to an equilibrium state,
see Fig. VI.19. In the next simulation an external stress σxz = 100 MPa allowed the
Frank-Read source to generate dislocation loops, see Fig. VI.20.

Two co-axial loops in a particle field

The annihilation was also tested for a 3D system of two dislocation loops with four
spherical particles. The parameters were set according to the section VI.5. Again, the
forces acting upon segments were used. The number of segments was N = 120 and the
time step was ∆t = 60 ms. Initially, the dislocation structure evolves as in the former
simulations (see Fig. VI.7), but the simulation continues further with the annihilation
process. Again, the very short segments make the simulation unstable, thus only 18000
steps were achieved. This corresponds to total simulation time t = 1080 s. Thus only
the loops about the particles situated at the Y axis detached from the initial dislocation
loops. The evolution is shown in Fig. VI.21.
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Figure VI.19: A Frank-Read source under shear stress σxz = 10MPa – equilibrium state.

-600

-400

-200

 0

 200

 400

 600

-1000-800 -600 -400 -200  0  200  400

Y
 [n

m
]

X [nm]

∆t = 0,03 s, 0 - 57 s

-1500

-1000

-500

 0

 500

 1000

 1500

-1500 -1000 -500  0  500  1000

Y
 [n

m
]

X [nm]

∆t = 0,03 s, 57 - 124 s

Figure VI.20: A Frank-Read source under shear stress σxz = 100MPa generating dislo-
cation loops.

VI.8.3 Annihilation in symmetric systems

The algorithm described in section VI.8.1 has been extended in order to incorporate the
symmetry operations in the simulations with particles. The situation before annihilation
in a symmetric system is illustrated in Fig. VI.22. The extension of the algorithm is also
searching for generalised intersections of two adjacent polygonal chains, in which the
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N = 120 segments, ∆t = 60 ms, 18000 steps.
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Figure VI.21: An evolution of two co-axial dislocation loops in a 3D crystal with four
spherical particles illustrating the annihilation process in 3D. Only the shapes of the
upper loop are shown.

two nearest vertices are interchanged. The scheme in Fig. VI.17 shows that the new
vertices will be created at the plane of symmetry. The situation can be redrawn, as it is
displayed in Fig. VI.23.

Figure VI.22: Annihilation of a dislocation line (full line) and its image (dashed line).

A1A1A1

A2A2A2

B1

B2
AA A′A′A′

C

D

Figure VI.23: Annihilation of a dislocation curve represented by a polygonal line and its
symmetric image.

If the distance between a vertex A and its image A′ is shorter than the critical dis-
tance of annihilation, we find intersections of the line segments A1A′ and A2A′ with the
symmetry plane. These are B1 and B2 respectively. Further the segments (A1, A) and
(A2, A) are removed, then also the vertex A is removed and new vertices B1 and B2 are
created. Then new edges will be created: (A1, B1) and (A2, B2).

The implementation can be optimized again in a way, that one of the new coordinates
(B1, for example) can be assigned to the original vertex A, so only one segment needs to

89



VI.8. Annihilation

be removed (here (A2, A)) and just one vertex needs to be created with the coordinate
B2 and just one segment needs to be created: (A2, B2).

VI.8.4 A planar simulation with particles and a four-fold symmetry

A contraction in a field of particles

The planar simulation with four spherical particles has been repeated according to the
section VI.8.2. Thus the number of segments in the whole system was N = 40 + 4 and
n = 11 in the elementary cell (first quadrant). The simulation was performed with forces
acting upon the segments.

The results are presented in Fig. VI.24. At the beginning, the shapes are the same
as the shapes formed during the simulation with the whole system (Fig. VI.18). Later
the simulations show the effect of the fixed direction of the ending segments near the
border of the quadrant, which makes the interior loop to keep the diamond shape. The
segments propagating through the quadrant border are removed from the system. This
is the actual implementation of the annihilation of the contracting loop. The interior
loop annihilates (or shrinks completely) in the step 6989 (t = 206.94 s). The simulation
finished in the next step at the time t = 206.97 s as the loops on the particle surfaces
cannot contract any more.
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Figure VI.24: An evolution of a single dislocation loop after an interaction with spherical
precipitates.

Then the same simulation was carried out second time, but with a finer initial dis-
cretisation, N = 120 + 4, i.e. with n = 31 segments in the first quadrant. The results
show that the system of smooth lines was better represented especially after the passing
through the particle field. The remaining interior loop keeps an approximately elliptic
shape until it annihilates in the step 5086 (t = 152.58 s).
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Dislocation loop expansion

The next simulation considered a single dislocation loop in a field of precipitates, now
under the action of applied shear stress σxz = 100 MPa. The simulation parameters
were chosen the same as in the Tab. VI.4, except the initial loop radius, which was
R = 750 nm. Thus the initial dislocation loop was placed inside the precipitate field and
started expanding due to the applied stress.
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b) N = 120, remeshing and annihilation.

Figure VI.25: An expansion of a dislocation loop in a field of precipitates.

The results are shown in Fig. VI.25. The initial state is a circular dislocation loop in
the centre of the figure. In the first simulation (Fig. VI.25a), the remeshing was deliber-
ately switched off. As a result, the discretisation becomes very coarse and the dislocation
line reaches an equilibrium state before it would surpass the spherical particles.

The same simulation, but with more fine discretisation in the initial state and with
remeshing enabled, yields different results presented in Fig. VI.25b. The dislocation
loop surpasses the spherical precipitates and keeps expanding.

VI.8.5 3D simulations with particles

Dislocation loop contraction in a particle field

A true 3D simulation, which demonstrates dislocation climb features incorporated in the
model, addressed a dislocation system consisted of 7 coaxial dislocation loops, initially
forming a cylinder (Fig. VI.26). The coordinates of the polygon vertices representing the
loops are:

N j,i = (R cos ϕi, R sin ϕi, jh) , ϕi =
2π[i + i0 − 1]

N

i ∈ {1 . . . N}, i0 = +
1
2

j ∈ {−3 . . . 3}

(VI.47)
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The loops are situated in planes Z = jh, h = 100 nm, j ∈ {−3 . . . 3}. The simulation
parameters are listed in Table VI.5.

h
h

d = 2r

2R

0th
1st

2nd

3rd

−1st

−2nd

−3rd

Figure VI.26: Dislocation cylinder with spherical precipitates.

The simulation is performed with the force decomposition based on the stress tensor
decomposition. The system has planes of symmetry X = 0, Y = 0 and Z = 0, i.e. it can
be represented only by the first octant. This approach is necessary to reduce rounding
errors. As a side effect, the simulation has been running to 8 times faster than it would
have been without the symmetry operations.

Table VI.5: Evolution of a dislocation loop cylinder – parameters.
µ 0.8 · 1011 Nm−2 shear modulus
ν 0.3 Poisson ratio

D0 2 · 10−4 m2s−1 diffusion coefficient for zero Q
Q 240 kJ mol−1 activation energy of self-diffusion
T 873 K temperature
Ω (3.5 · 10−10 m)3 atomic volume
b (2, 0, 0) · 10−10 m Burgers vector
R 1500 nm initial dislocation loop radius
N 120 + 4 # of line segments
∆t 60 ms time step

l 〈10, 120〉 nm segment length range
da 10 nm critical distance for annihilation
h 100 nm loop distance
d 600 nm diameter of the particles
λ
√

2e particle distance
ci {[±e, 0, 0], [0,±e, 0]} coordinates of the particle centers
e 1150 nm particle eccentricity

Several snapshots of the dislocation system during the simulation are plotted in Fig.
VI.27. The positions of dislocation segments are presented in projections into coordinate
planes, where each row shows a XY projection followed by XZ and YZ projections. For
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simplicity, only a half of the system is plotted, i.e. the dislocation lines with coordinates
Z ≥ 0.

Initially, the loops start contracting. Due to the symmetry of the system, the driving
forces acting upon the 0th (central) loop imply only a glide motion. Thus the 0th loop
stays in the plane Z = 0, and it is visible only in the XY plot, as in the XZ and YZ pro-
jections it coincides with the X and Y axes respectively. The outer loops are subjected
to both glide and climb forces. The forces acting in the ±Z direction affect mostly the
segments with prevailing screw character (i.e. parallel to the X axis). The climb mecha-
nism drives the outermost ±3rd loops away from the particles. The neighbouring loops
(±2nd) do get into contact with the particles only by the segments with prevailing edge
character – the screw segments move away. As a result, only the 0th and ±1st loops get
pinned by the particles.

As can be seen in the second row (t = 192 s), the first annihilation occurs at the
particles lying on the X axis for the ±2nd loops, as the outer loops tend to contract more
quickly. Then the process repeats also for the inner loops, and they leave new loops on
the particle interfaces.

Then the ±3rd loops annihilate without any contact with the particles (t > 336 s).
Later, the remaining loops encircle also the particles lying on the Y axis and form new
loops on their surfaces (this situation is not plotted). Finally, the contraction continues,
and also the remaining loops in the center of the particle field annihilate.

Dislocation loop expansion in a particle field

A similar simulation with 7 co-axial loops has been performed with the same parameters
as in the Table VI.5. Here, however, the initial dislocation loop radius has been set to
R = 750 nm and an external shear stress σxz = 100 MPa has been applied. Like in the
simulation with the single expanding loop in a field of precipitates mentioned in the
section VI.8.4, the dislocation loop cylinder was also expanding.

Selected snapshots of the simulation are shown in Fig. VI.28. The central loop is
fixed in the plane Z = 0 due to the system symmetry. The segments with the prevail-
ing screw character move more quickly, and the ±3rd loops do not get into contact with
the particles, whereas the remaining loops do. The applied stress field greatly exceeds
the self-stress, so the dislocation loops are not only expanding, but they tend to keep
their initial circular shape (in the XY projection) for a long time. The loops are pass-
ing through the particle field and leave new loops on the particle surfaces. Later, the
dislocation configuration becomes very complex due to the combined glide and climb
motion of the segments, as can be seen from the XZ and YZ projections. Suddenly, the
stress field of the deformed loops produces such driving forces, that helices are formed
on the ±3rd loops, making the configuration even more complex.

VI.9 Symmetry (II.)

Models of dislocation structures may often include a translational symmetry. It corre-
sponds to a situation, when we need to study processes in macroscopic (bulk) samples.
The real dislocation densities observed during high temperature plastic deformation are
about 1013− 1014 m−2 (see e.g. Fig. I.8 and [1–3]). A real sample thus contains too many
dislocations, for which it is not possible to address segment-segment interactions for
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Figure VI.27: A contraction of multiple dislocation loops in a field of precipitates.
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Figure VI.28: An expansion of multiple dislocation loops in a field of precipitates.
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every pair of segments. Therefore, periodic boundary conditions are often employed to
mimic the behaviour of bulk samples. The periodic boundary conditions build upon a
replication of a suitable elementary cell. If we neglect interactions between segments
with large mutual distance (i.e. several multiples of the dimensions of the elementary
cell), we can use only a finite number of replications of the elementary cell to satisfacto-
rily represent the dislocation system.

VI.9.1 Translational symmetry

1 2

3 4 5

1− 2−

3− 4− 5−

1+ 2+

3+ 4+

5+

P̂(+a)P̂(−a)

Figure VI.29: Periodic boundary conditions and a translational symmetry.

We consider a periodic system (Fig. VI.29). which can be fully described by the ver-
tices and segments inside the elementary cell bound by the solid frame. The interaction
between the segments inside the elementary cell can be directly evaluated. On the other
hand, the force contributions from the segments outside the elementary cell cannot be
expressed directly, since the corresponding data are not stored in the computer mem-
ory. However, the evaluation of forces acting upon the segments outside the elementary
cell originating from the segments inside the elementary cell is straightforward. These
forces are the same as the forces coming from translationally symmetric segment and
acting on the segments in the elementary cell. For example, the force exerted by the
segment i′ = i+ upon a jth segment can be computed as

F j,i′(Rj,i′, Li) = P̂−1
L (−a)

{[

b ·
(

T̂iσ̃(T̂
−1
i Rj′,i, Li)T̂

−1
i

)]

×
(

P̂L(−a)ξ j

)}

,

Rj′,i = P̂(−a)R j − Ri.
(VI.48)

Here a is the cell width, P̂(−a) is a translation by a distance a in the negative (leftward)
direction and P̂L is a linear component of the translation (i.e. an identity). This relation
is formally identical to the former relation for the symmetry transformation of forces
(VI.40). From this follows, that these operations of symmetry can be combined.
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VI.9.2 A comparative simulation

The first system, where the translational symmetry was applied, was a structure consist-
ing of several dislocation loops arranged in a planar lattice. The simulation parameters
similar to the preceding calculations with a single dislocation loops are summarized in
Table VI.6.

Table VI.6: Simulation parameters for several dislocation loops arranged in a regular
planar pattern.

µ 0.8 · 1011 Nm−2 shear modulus
ν 0.3 Poisson ratio

D0 2 · 10−4 m2s−1 diffusion coefficient for zero Q
Q 240 kJ mol−1 activation energy of self-diffusion
T 873 K temperature
Ω (3.5 · 10−10 m)3 atomic volume
b (2, 0, 0) · 10−10 m Burgers vector
R 500 nm dislocation loop radius
N 40 # of line segments
n2 {9, 25} # of loops in the lattice

N j,i Cj + R[cos ϕi, sin ϕi, 0] vertex coordinates, ϕi =
2π(i− 1

2 )
N

Cj
5
2 R[(j − 1) mod n− ⌊n

2 ⌋, ⌊
j−1

n ⌋, 0] coordinates of loop centers, j ∈ {1, . . . , n2}
∆t 30 ms time step

l 〈30, 120〉 nm segment length range

Four simulations were carried out in total: two simulations for two different num-
bers of dislocation loops arranged in a regular planar pattern. At first, 3× 3 = 9 loops
were set up in the system, secondly 5× 5 = 25 loops were considered. In both cases,
the simulations were carried out twice: 1) without the translational symmetry (all loops
were set up in the system) and 2) with the translational symmetry, where only the cen-
tral loop had been set up and replicated into the other sites in the regular planar pattern
3× 3 or 5× 5.

The obtained results are plotted in Fig. VI.30. The initial configuration is denoted by
a black line. The final configuration in a step 3500 (t = 105 s) is denoted by a red line
for the simulation without the translational symmetry and by a blue line for the simula-
tion with the translational symmetry. The results show that the difference between the
central loops in the simulations with and without the translational symmetry is rather
small – this loop contracts slower than a single dislocation loop, as the loop is attracted
by the neighbouring loops, particularly by their nearest segments. The loops near the
end of the finite planar pattern contract faster in the simulation without the translational
symmetry, because they have less neighbouring dislocations which would attract them.
However, the contribution to the slowing down of the contraction of the central loop
originating from the farther loops is much smaller. Extension of the pattern to the 5× 5
loops leads to an even slower contraction of the central loop, even though the deceler-
ation is small. A similar effect has the replication of the central loop by the operations
of translational symmetry – the neighbouring replications slow down the contraction of
the central loop, see the positions of the central loop in the last simulation step 3500 in
detailed Fig. VI.31.
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These results suggest that a sufficient finite number of translational replications of
an elementary cell plausibly approximates exact periodic boundary conditions.
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Figure VI.30: A simulation with a planar lattice arrangement of dislocation loops: a)
3× 3 loops, b) 5× 5 loops. The snapshot is taken in time t = 105 s. Positions of the loops
in the simulation step 3500 is shown for translational replication (blue curves) and no
boundary conditions (red curves).
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VII. MODELLING OF LOW-ANGLE

DISLOCATION BOUNDARIES

The model presented in the preceding sections has been adapted for a system of fully
flexible dislocation lines forming a tilt dislocation boundary. The model addresses the
boundary migration under the action of applied stress at high temperatures. The nu-
merical simulations also consider the interactions between the dislocation system and a
field of spherical precipitates.

VII.1 Geometry of the low-angle boundary

The low-angle dislocation boundary, in its starting configuration, consists of straight,
parallel and equidistant dislocations (see Fig. VII.1). The dislocation line spacing is h,
the particle diameter is d and the particle spacing is λY and λZ in the direction of Y and
Z, respectively.

The calculation is performed on an elementary cell, which is replicated in a 3× 3
pattern. The replication is possible due to the translational symmetry (section VI.9),
which allows the simplified system to approximate an infinite periodic system. The
simulation cell has also two planes of symmetry, Y = 0 and Z = 0 (section VI.6). This
approach greatly accelerates the computation and reduces memory requirements of the
simulation.

The geometry of the elementary cell is depicted in Fig. VII.2. The initial coordinates
describing the polygonal chains representing the dislocation lines are determined by a
relation

N j,i =

(

0, aY

(
i
N
− 1

2

)

, jh
)

, i ∈ {0, . . . , N} , j ∈
{

−
⌊n

2

⌋

, . . . ,+
⌊n

2

⌋}

, (VII.1)

where n is a number of dislocation lines in the elementary cell and N is a number of
dislocation segments per one line. Actually, only coordinates with i ≥ ⌈N/2⌉ and j ≥ 0
are represented in the computer memory due to the system symmetry. Let us introduce
a new coordinate ψ along a single dislocation line:

N j(ψ) = (0, aY(ψ− 1/2), jh) , 〈0, 1〉 ∋ ψ =
i

N
(VII.2)

and i, j the same as in (VII.1). The parametric coordinate ψ will be further used in force
plots.

The particle distances λY = λZ = 200 nm are the same for all of the simulations.
Except the section VII.2.3, the particle diameter is always d = 100 nm. The parametric
study presented in the next sections considers variable number of dislocation lines in
the elementary cell n (related to the initial line spacing h) and variable applied shear
stress σxz. All other input parameters are listed in Table VII.1. Considering the values of
b and h, the misorientation angle1 Θ of these low-angle dislocation boundaries lies in a
range from 0.3◦ to 0.9◦.

1See relation (I.8).
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λY

λZ

aY

aZ

d

h

Figure VII.1: A low-angle dislocation boundary with a field of precipitates. The elemen-
tary calculation cell is highlighted.

VII.2 Simulations and results

The numerical simulations have been performed with different force decompositions.
The very first calculations used the stress tensor decomposition. Later, the same cal-
culations were run with the force decomposition based on crystallographic slip planes.
Finally, a decomposition using edge and screw components of the Burgers vector has
been used for a detailed parametric study.

VII.2.1 Results based on the stress tensor decomposition

The simulations have been run for line spacings from a range h ∈ (12, 34) nm with
applied shear stress between σxz ∈ 〈20, 100〉MPa. The stress tensor decomposition has
been used (see section VI.2.2) with the relation between the mobility prefactors A = 10B,
like in the former simulations.
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Figure VII.2: 2D projections of the low-angle dislocation boundary.

Table VII.1: Evolution of a low-angle dislocation boundary – input parameters.
µ 0.8 · 1011 Nm−2 shear modulus
ν 0.3 Poisson ratio

D0 2 · 10−4 m2s−1 diffusion coefficient for zero Q
Q 240 kJ mol−1 activation energy of self-diffusion
T 873 K temperature
Ω (0.35 nm)3 atomic volume
b (0.2; 0; 0) nm Burgers vector

aY; aZ 200 nm elementary cell dimensions
N 32 # of line segments per line
n {7, . . . , 17} # of lines in a cell

∆t 3 ms time step
l 〈3, 8〉 nm segment length

da 3 nm critical distance for annihilation
h aZ/(n− 1) nm line distance

λY; λZ 200 particle distance
d 100 nm particle diameter
C [−d; 0; 0] nm particle center position
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Figure VII.3: An evolution of the low-angle tilt boundary with h = 20 nm: a) stable
configuration with σxz = 41.2 MPa, b) unstable configuration with σxz = 54.5 MPa.

The Figure VII.3 shows evolution of the low-angle dislocation boundary with h =
20 nm for two different values of the applied stress. The Fig. VII.3a shows a system
subjected to the applied stress of 41.2 MPa, which converged to an equilibrium state.
The applied stress σxz is not high enough to make the dislocation pass through the field
of precipitates. Therefore, the particle structure immobilizes the dislocation wall. An
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Chapter VII: Modelling of low-angle dislocation boundaries

important fact is that even the dislocations, which are not in contact with the precipi-
tates, cannot move through the precipitate field. There is an attractive force acting on
dislocation segments, which are slightly displaced from the wall structure (see section
IV.6.3). However, the attractive forces are in equilibrium with the forces coming from the
applied stress, so the total driving forces vanish in the equilibrium state. As an example,
the forces along the dislocation line lying in the plane Z = aZ/2, which does not get into
contact with the precipitates, are plotted in Fig. VII.4). The initial driving forces come
only from the applied stress. These initial forces are the same for every segment in the
system and their magnitude is b · σxz. Thus the logarithm of the ratio between an actual
force and the initial force must be zero in the initial state. At the end of the simulation
(t = 105 s), the actual driving forces are more than three orders of magnitude smaller
than in the simulation start, leaving the system effectively in equilibrium.
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Figure VII.4: Force along the dislocation line in the plane Z = aZ/2, h = 20 nm.

On the other hand, higher applied stress allows the dislocation wall to pass through
the particle field. Such situation is shown in Fig. VII.3b. The result is a low-angle
dislocation boundary migrating further through the crystal. During the passing stage, a
series of dislocation loops is stored at the particle interfaces. Here it is obvious, that the
forces attracting the “free” dislocation segments back to the regular wall configuration
are outbalanced by the applied stress.

The results in Fig. VII.3 suggest that there is a critical stress σC(h) which must be sur-
passed to make the dislocation wall pass through the impeding precipitates. However,
some combinations of applied stress and the initial wall configuration may lead to a de-
composition of the dislocation boundary during the passing process, like the situation
shown in Fig. VII.5. Here is the applied stress of 54 MPa still above the critical threshold
and just slightly lower than in the case depicted in Fig. VII.3. One of the dislocations
does not encircle the precipitate, but it is slowly pulled out of the dislocation boundary.
The self-stress due to the high local curvature at the boundary of the elementary cell
prevails and the particular dislocation line starts to move in the opposite direction than
the passing dislocation wall.

This particular behaviour has been mostly observed for dislocation boundaries with
lower density subjected to applied stresses above the critical stress. The evolution regimes
are summarized in Fig. VII.62.

2For stresses above 80 MPa all wall configurations passed through the particle field and the results are
not shown in the plot.
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The interactions between lines in the dislocation wall become stronger with decreas-
ing line spacing h, i.e. with growing dislocation density. The stronger interactions make
the critical stress higher, and also stabilize the dislocation wall, so it is less probable that
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Figure VII.5: An evolution of the low-angle tilt boundary with h = 20 nm and σxz =
54 MPa.
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Figure VII.6: Regimes of evolution of the low-angle dislocation boundary – calculated
in the stress tensor decomposition regime, see section VI.2.2.
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a dislocation line will be pulled out of the wall. The sparse dislocation walls, which
correspond to lower misorientation angles, decompose more easily.

The critical stress can be approximated by a relation

σC ∼
1
h

, (VII.3)

and is thus inversely proportional to the dislocation spacing h or proportional to the
density of dislocations per unit length of the boundary.

The actual dependence has been fitted by a least square method with a following
relation:

σC(h) =
aσ

h
, (VII.4)

where
aσ

.
= (770± 20) MPa · nm, ρ(aσ)

.
= 3 % (VII.5)

The rather high deviations come from the fact, that the approximation (VII.4) is not
exact and does not address a discrete nature of the interaction process. The motion of
dislocations at the particle-matrix interface is restricted. A part of a dislocation line,
which gets into contact with a precipitate, remains on the particle surface during a con-
siderable portion of the simulation. As a result, the critical stress σC(h) is to some degree
quantised by the number of dislocation lines having a direct contact with the precipi-
tates.

VII.2.2 Results based on the crystallographic force decomposition

The simulations have been performed with the same parameters as before, i.e. with
line spacing h ∈ (12, 34) nm and with applied shear stress σxz ∈ 〈20, 100〉 MPa. The
force decomposition based on crystallographic slip planes has been used (see section
VI.2.3). The dislocation kinetics has been controlled by the glide prefactor A1 = 10B
and non-compact glide prefactor equal to the diffusion prefactor, i.e. A2 = B. The
slip system is determined by the Burgers vector b = (0.2, 0, 0) nm and the slip planes
NK = {(0, 1, 0), (0, 0, 1), (0, 1, 1), (0, 1,−1)}.

The simulation results exhibit some similarity to those based on the stress tensor
decomposition. However, the dislocation velocities are generally lower due to the non-
compact glide, since this deformation mode is not included in the former method. This
also reduces effects of forces attracting dislocations towards the dislocation boundary.
The consequences are demonstrated in Fig. VII.7, which shows a sparse dislocation
wall with h = 33.3 nm under applied stress σxz = 100 MPa. As expected, the disloca-
tion wall passes through the precipitate field, but decomposes. At first, the uppermost
(lowermost) line in the simulation cell (lying in plane Z = ±aZ/2) detaches from the
dislocation wall and moves quickly in the negative X direction. Later the same situa-
tion happens with the dislocation lying in the central plane (Z = 0). Only after this, the
remaining lines propagate through the particle field and form even sparser dislocation
wall structure. This effect applies generally for the sparse dislocation walls (approx.
h > 20 nm) under high applied stress. Lower shear stresses (σxz < 70 MPa) make
the dislocation walls propagate without a decomposition. On the other hand, results
presented in Fig. VII.8 suggest that a region just above the critical stress σC(h) is charac-
teristic for dislocation wall splitting. This result is similar to the outcome yielded by the
simulations based on the stress tensor decomposition (see Fig. VII.6).
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Figure VII.7: An evolution of the low-angle tilt boundary: h = 33.3 nm, σxz = 100 MPa.
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Figure VII.9: An evolution of the low-angle tilt boundary with h .
= 14.29 nm and σxz =

55 MPa.

The dislocation boundaries with smaller line spacing h are more stable, but their be-
haviour also changes with the applied variant of mobility approach. In Fig. VII.9 it is
possible to see a competition between the forces attracting the dislocation line to the dis-
location wall and the forces based on the system periodicity. The dislocation boundary
motion slows down, but finally the dislocation line disconnects from the precipitates
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Figure VII.10: Comparison between critical stresses computed using the stress tensor de-
composition (dashed line) and the force decomposition to crystallographic planes (solid
line).

and propagates further as a part of the dislocation boundary. The remaining loop starts
to contract back to the particle surface, but the attractive forces between the neighbour-
ing cells make the dislocation line annihilate one more time, actually forming two new
dislocation lines, one propagating in the negative X direction like the original disloca-
tion boundary, and the second in the positive X direction towards the initial position. In
contrast to the situation with dislocation wall decomposition, these two new dislocation
lines increase dislocation density.

Like in the simulations based on the stress tensor decomposition, the critical stress
σC(h) is an inverse function of the line spacing h (VII.3). The least-squares fit with rela-
tion (VII.4) yielded

aσ
.
= (780± 30) MPa · nm, ρ(aσ)

.
= 4 % (VII.6)

These results closely correspond to the critical stress computed by means of the stress
tensor decomposition. This is also reflected in the plot in Fig. VII.10.

VII.2.3 Results based on the force decomposition according to crys-

tallographic slip planes and the components of the Burgers

vector

These simulations employed the most advanced method of the force decomposition and
related calculations of dislocation velocity. The forces are decomposed according to crys-
tallographic slip planes and also the edge and screw parts of a general mixed dislocation
segment. The method is described in detail in section VI.2.4. The segment velocity is cal-
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Table VII.2: Critical applied shear stress – parameters and accuracy of the fit.

d [nm] aσ [MPa · nm] ρ(aσ)
120 980± 30 3 %
100 730± 20 3 %
80 500± 40 7 %
60 320± 24 7 %
50 190± 25 13 %

culated using the relation (VI.23), which is recalled here:

v =

(
bs

b

)2

AsFs +

(
be

b

)2

(Ae,GFe,G + Ae,CFe,C) .

The relation involves prefactors for a contribution from the screw component of the
force, this is As. The edge component has two distinct prefactors Ae,G and Ae,C for the
glide and climb contributions, respectively. These prefactors are constructed by scaling
the diffusion factor β(b), see formula (VI.14). The scale factor for a crystallographic glide
is ag = 10, while anc = 2 for the non-compact glide and ac = 1 for dislocation climb.
The slip system is the same as in the section VII.2.2.

The purpose of these calculations was a detailed parametric study focused not only
on the relation between the critical stress σC and the initial dislocation spacing h, but also
on the influence of the particle size d. The applied shear stress was in the range σxz ∈
〈5, 100〉 MPa. Following particle diameters were selected: d ∈ {50, 60, 80, 100, 120} nm.
The dislocation line spacing was h ∈ (12, 34) nm.

The simulation results are qualitatively similar to the preceding two simulations with
stress tensor decomposition (section VII.2.1) and the force decomposition reflecting the
crystallography (section VII.2.2). However, in this last approach the dislocation mobility
is even more constrained by the crystallography. This further slows down the disloca-
tion motion. Like in the former cases, the LADB was either stopped by the precipitates,
or it passed through the precipitate field, possibly decomposing to several dislocation
walls with higher line spacing h. Again, the decomposition is more frequent for sparse
dislocation walls, from whose the individual dislocation lines can be rejected more eas-
ily. The LADB interaction with the precipitates may also lead to formation of kinks on
the dislocation lines. This phenomenon is documented in the snapshots in Fig. VII.11.
The formation of kinks further reduces the dislocation velocity.

The plot in Fig. VII.12 shows a comparison of critical stresses for simulations with
different force decomposition techniques. The results are computed for simulations with
precipitate diameter d = 100 nm. The results suggest that the separation of force contri-
butions according to the edge be and screw component bs of the Burgers vector does not
significantly change the critical stresses.

The maps depicting these the LADB regimes for all investigated precipitate diame-
ters are displayed in Fig. VII.13. The critical stress σC(h) has been approximated by the
relation (VII.4). The results for individual particle diameters are listed in Table VII.2.

The strong dependence of the critical stress σC(h, d) on the precipitate diameter is
illustrated in Fig. VII.14. An increase of the precipitate diameter leads to higher critical
stress needed for the LADB to overcome the precipitate field. The connection between
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Figure VII.11: An evolution of the low-angle tilt boundary with h = 16.6 nm, σxz =
80 MPa and d = 100 nm.

the precipitate diameter d and the critical stress is determined by the relation (I.9), which
is recalled here:

σOrowan = Γ
µb

λ− d
.
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Figure VII.12: Comparison between critical stresses computed using the force decom-
position according to crystallographic slip planes and the components of the Burgers
vector (solid line) and the two former methods (dashed lines). The precipitate diameter
is d = 100 nm.

Table VII.3: The Γ factor for different initial dislocation line spacings h.

h [nm] Γ ρ(Γ)
33.3 0.13± 0.02 17 %
25.0 0.17± 0.03 15 %
20.0 0.21± 0.02 12 %
16.6 0.25± 0.03 13 %
14.3 0.28± 0.04 15 %
12.5 0.31± 0.04 13 %

The Orowan stress for Γ = 0.8 (this value is fitted from experimental results, see [28])
is plotted together with the critical stresses σC in Fig. VII.15. The plot shows that the
critical stresses obtained from the simulations are significantly lower than the Orowan
stress. This agrees with experimental results from compression tests by Hausselt and
Nix [4]. The results obtained from the simulation have been fitted with the least-squares
method using the relation (I.9) with Γ as the fit parameter. The values of the Γ parameter
for different initial line spacings h are listed in Table VII.3. These fits are displayed
with solid lines in Fig. VII.16. However, the Orowan-type relation (I.9) does not well
approximate the dependence of the critical stress σC on the particle diameter d. For
higher dislocation densities, the critical stress grows almost linearly with the precipitate
diameter (see e.g. the points for h = 12.5 nm plotted in Fig. VII.16).
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d = 120 nm.
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Figure VII.13 cont.: Regimes of LADB – force decomposition according to crystallo-
graphic planes and the components of the Burgers vector. Particle diameters d ∈
{50, 60, 80, 100, 120} nm.
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Figure VII.14: Critical stresses for different precipitate diameters.

VII.2.4 Calculation of strain rates

The simulations based on the force decomposition according to crystallography and
the components of the Burgers vector were analyzed in order to compute strain rates
associated with the LADB migration. The technique used for the strain rate calculations
is described in the section IV.7. The preliminary data presented here were obtained only
for one diameter of the precipitates d = 100 nm. As an example, a time evolution of
strain rates for a system with initial dislocation line spacing h = 16.6 nm is presented in
Fig. VII.17.
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Figure VII.16: Critical stresses for various precipitate diameters d and line spacings h.

The curves shown in Fig. VII.17 indicate that the dislocations initially move with a
velocity proportional to the applied stress, until they encounter spherical precipitates.
Depending on the magnitude of the applied stress and the dislocation spacing, the dis-
location system may or may not overcome the precipitates. For applied stresses below
the critical stress, the strain rate approaches zero. For applied stresses above σC, the
dislocation lines leave loops on the precipitate surfaces and continue their migration
through the crystal. Depending on the complex interactions between individual dis-
location lines, dislocation kinks may form on some of the lines (see snapshots in Fig.
VII.11 for h = 16.6 nm and σxz = 80 MPa), which greatly reduces the velocity of the
whole dislocation boundary. These structures are unstable, however, they can remain
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in the system for thousands of integration steps, even for the rest of the simulation.
If the dislocation kinks disappear, a sudden increase of the dislocation velocity is ob-
served, which leads to a significant increase of the strain rate to the original level (see
Fig. VII.17).

The strain rates evaluated from the DDD simulation can be analyzed with respect
to the magnitude of the externally applied stress. For this purpose, minimum strain
rates ε̇min observed in the individual simulations are plotted as a function of the applied
stress. The corresponding stress exponent n was evaluated, see equation (I.3). Unless
the applied stress is below the critical stress σC, the minimum value of dε/dt is nonzero
and is observed shortly after the onset of the DDD simulation, when the dislocation
boundary comes into contact with the spherical precipitates. Taking the logarithm of
the relation (I.3) gives

log ε̇min = log B(T) + n log σ. (VII.7)

Thus, in a bilogarithmic plot of the minimum strain rate ε̇min vs. applied stress σ, the
stress exponent n determines the slope of a straight line.

The plots in Fig. VII.18 show that the stress exponent n changes with decreasing
applied stress. If the applied shear stress is far above σC, the precipitates are quickly
surpassed by the dislocation boundary. In this case, the minimum strain rate is not
sensitive to changes in the applied stress and the stress exponent has the order in a
range n ∈ (1, 3). In this stress range, the stress exponent approaches a value n = 1
typical for diffusion creep in pure metals (section I.1.3 and [1]). On the other hand, for
low values of the applied shear stress, the dislocation boundary moves slowly and the
dislocation velocity changes rapidly with the shear stress. The stress exponent changes
rapidly as the shear stress approaches σC. Some of the stress exponents are indicated
in Fig. VII.18, like n ≈ 17 for the LADB with the initial line spacing h = 12.5 nm. This
result is in a good agreement with experimental data obtained by Hausselt and Nix [4].
In their work, they observed a threshold stress type behaviour with n as large as 40 for
a dispersion strengthened NiCr alloy just above the critical stress.

117



VII.2. Simulations and results

0
2
4
6
8

10
12
14
16
18
20

0 50 100 150 200 250 300

10
5  d

ε/
d

t

t [s]

h = 16.66 nm

30 MPa

40 MPa

45 MPa

46 MPa

47 MPa

80 MPa

90 MPa

Figure VII.17: Strain rates due to migration of a LADB with initial dislocation line spac-
ing h = 16.6 nm. Precipitate diameter is d = 100 nm.

1e
-0

8

1e
-0

7

1e
-0

6

1e
-0

5

1e
-0

4

1e
-0

3

1e
-0

2  2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0 

10
0

dε/dt

σ 
[M

P
a]

h 
=

 1
4.

29
 n

m
   

   
   

 σ
C

n 
=

 2
.3

1
n 

=
 6

.5
4

1e
-0

8

1e
-0

7

1e
-0

6

1e
-0

5

1e
-0

4

1e
-0

3

1e
-0

2  2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0 

10
0

dε/dt

σ 
[M

P
a]

h 
=

 1
2.

50
 n

m
   

   
   

 σ
C

n 
=

 2
.9

3
n 

=
 1

7.
35

Figure VII.18: Minimum strain rates for precipitate diameter d = 100 nm and dislocation
line spacings h ∈ {14.3, 12.5} nm.

118



C
hapter

V
II:M

odelling
oflow

-angle
dislocation

boundaries

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 20  30  40  50  60  70  80  90 100

d
ε/

d
t

σ [MPa]

h = 33.33 nm
          σC

n = 1.87
n = 5.53

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 20  30  40  50  60  70  80  90 100

d
ε/

d
t

σ [MPa]

h = 25.00 nm
          σC

n = 1.68
n = 5.90

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 20  30  40  50  60  70  80  90 100

d
ε/

d
t

σ [MPa]

h = 20.00 nm
          σC

n = 2.05
n = 16.61

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 20  30  40  50  60  70  80  90 100

d
ε/

d
t

σ [MPa]

h = 16.66 nm
          σC

n = 1.57
n = 11.47

Figu
re

V
II.18

cont.:
M

inim
u

m
strain

rates
for

p
recip

itate
d

iam
eter

d
=

100
nm

and
d

is-
location

line
sp

acings
h
∈
{33. 3,25,20,16.6}

nm
.

119



VII.2. Simulations and results

120



VIII. SUMMARY AND

CONCLUSIONS

VIII.1 The 3D DDD model

This work focuses on a design of a 3D discrete dislocation dynamics (DDD) model appli-
cable to study of plastic deformation in a temperature regime where a contribution due
to diffusion cannot be neglected. A numerical implementation of the model represents
a considerable part of this work.

The Chapter I introduces a brief review of high temperature deformation processes
and their microstructural background. The connection between the plastic deformation
and crystal defects is summarized, with emphasis on the importance of dislocations.
The state-of-art 2D and 3D DDD methods are briefly reviewed.

The Chapter III summarizes necessary knowledge from the theory of elasticity. This
is the fundament of the theory of dislocations discussed in the Chapter IV. The potential
of the model is demonstrated in Chapters V, VI and VII, particularly, its application on
a system of infinite parallel dislocations forming a dislocation boundary is elaborated in
detail.

VIII.2 Benchmark simulations

The model is introduced in Chapter V. It is tested and demonstrated on benchmark
dislocation systems. The very first is a single dislocation loop contracting due to its
self-stress. This simple dislocation configuration is used to study influences of the time
integration step, discretisation and remeshing of the dislocation structure. There is also
a parametric study of the dependence of the driving forces on the discretisation and
on the initial radius of the dislocation loop. The dislocation loop is used also for the
first simulations with rigid spherical precipitates. The second system is a Frank-Read
dislocation source, which produces new dislocation loops under the application of shear
stress.

The more complex benchmarks involved two or more dislocation loops at a pres-
ence of spherical precipitates. These configurations were studied both with and with-
out an externally applied stress. The corresponding simulations revealed a complicated
behaviour, especially when the dislocation structure evolved under the action of the ex-
ternally applied stress. The complexity of the system also resulted in the introduction of
several optimizations of the model, which allow to address the physical symmetry. This
significantly increased the performance of the numerical implementation of the model.
These benchmarks are described in Chapter VI. The dislocation annihilation and the
symmetry optimizations are still a subject of the same chapter.
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VIII.3. Low angle tilt boundary

VIII.3 Low angle tilt boundary

The model has been used to study a behaviour of a low-angle tilt boundaries subjected
to an applied shear stress at high temperatures (Chapter VII). The dislocation system
consisted of initially equidistant edge dislocations of an infinite length. To represent
such a large-scale structure, an approximation based on periodic boundary conditions
has been adopted, effectively replacing an infinite system with an elementary simulation
cell. The single simulation cell is replicated using a translational symmetry (section
VI.9), which transforms the simulation cell into the large-scale structure. The simulation
cell is initially set up with a symmetric structure of dislocations and precipitates, which
is also considered in the model (section VI.6).

The evolution of the dislocation boundary is studied using three different approaches
that treat differently a relation between the driving forces and the dislocation velocity
(section VI.2). Depending on the initial dislocation line spacing h, the diameter of the
precipitates d and the magnitude of the applied shear stress σxz, the dislocation bound-
ary may reach an equilibrium state, when it is held back by the precipitates, which thus
strengthen the material. An important fact is that even the dislocations, which are not in
contact with the precipitates, are in this range of applied stresses prevented from further
motion (see a force plot in Fig. VII.4). Low-angle tilt boundaries attract dislocations near
the equilibrium position into the wall, see section IV.6.

Otherwise, if the applied stress is higher than critical stress σC(h, d), the dislocation
boundary may pass between the precipitates and leave dislocation loops on their sur-
faces. The results show that the value of the critical stress σC does not depend much on
the selected equations of motion. On the other hand, the behaviour of the dislocation
boundary after the passing through the precipitate field is strongly dependent on the
kinetic relation between a segment velocity and the driving force. For higher initial dis-
tances h between the dislocations, which correspond to smaller misorientation angles
between two neighbour subgrains, the interactions between the individual dislocations
are not strong enough to hold all of the dislocations in the boundary, which thus may
decompose into two or more even less dense boundaries. A subgrain boundary may be
even completely eliminated by this process and only individual dislocations remain.

The existence of certain threshold stresses has been reported from creep experiments
[4]. Threshold stresses between 20 and 60 MPa (Chapter VII) correspond to misorienta-
tion angles from 0.3◦ to 0.9◦. This well agrees with misorientation angles observed by
TEM after high temperature deformation [56–58].

The dependence of σC(h, d) on the particle diameter d for h = const. has been also
studied. The results have been compared with theoretically predicted Orowan stress
(section I.3 and [28]), which is inversely proportional to the distance between the pre-
cipitate surfaces, i.e. λ− d. The results show that the critical stress σC obtained from the
DDD simulations is far below the Orowan stress. The same observation is known from
creep experiments with dispersion strengthened alloys [4]. Furthermore, the Orowan
stress is not a good approximation of the critical stress σC obtained from the DDD sim-
ulations.

The dislocation displacement is connected with strain (section IV.7). Thus the dislo-
cation velocity has been used to calculate the strain rate. The recorded data have been
used to calculate the stress exponent n from the dependence of the minimum strain
rate on the applied stress. The results show that the stress exponent is low for ap-
plied stresses much higher than the critical stress. In this stress range n approaches
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1. On the other hand, the stress exponent is very high for stresses just above the critical
stress, which corresponds to experimental results obtained for dispersion strengthened
alloys [4].

VIII.4 Final summary

This work presents a 3D discrete dislocation dynamics (DDD) model, which is based on
the linear theory of elasticity. The model demonstrates its potential in studies of motion
of dislocations at high temperatures subjected to both the internal stress of the disloca-
tion structure and an externally applied stress. The model addresses also an interaction
between the dislocation lines and rigid spherical precipitates, as well as the annihilation
of dislocations. At first, the model is applied to benchmark systems, such as a single
dislocation loop contracting due to its self-stress and a Frank-Read dislocation source.
The loop simulations were carried out also with a presence of spherical precipitates.
Secondly, the model was used to study a behaviour of a set of two or more coaxial dislo-
cation loops in a field of spherical precipitates, at first for a case when no external stress
was applied. In the second case, a shear stress was applied to make the loops expand
in the precipitate field. This more complex benchmark brought a need to address the
symmetry of the simulated structure to improve the overall performance of the model.
Finally, the model was applied to a moving low-angle tilt boundary interacting with
equidistant spherical precipitates. This situation was studied for different applied shear
stresses, misorientation angles (i.e. dislocation spacing) of the tilt boundaries and also
for various diameters of the precipitates. The results of the 3D DDD simulations are: 1)
an existence of a critical stress, under which the motion of the tilt boundary is stopped
by the spherical precipitates, 2) a dependence of the critical stress on the dislocation
spacing and the precipitate diameter, 3) an evolution of the strain rate during the creep
process. The model prediction of the critical stress which is considerable lower than the
theoretically calculated Orowan stress is in agreement with known experimental results.
Also the stress exponents calculated from the minimum strain rate are in agreement with
the experimental findings.

123



VIII.4. Final summary

124



BIBLIOGRAPHY

[1] Čadek, J. Creep kovových materiálů. Academia, Praha (1984).

[2] Kassner, M. E., Pérez-Prado M.-T. Fundamentals of Creep in Metals and Alloys. Else-
vier, Amsterdam (2004).

[3] Hausselt, J. H., Nix, W. D. Dislocation structure of Ni-20Cr-2ThO2 after high-
temperatore deformation. Acta Metall. 25 (1977) 595–607.

[4] Hausselt, J. H., Nix, W. D. A model for high temperature deformation of dispersion
strenghtened metals based on substructural observations in Ni-20Cr-2ThO2. Acta
Metall. 25 (1977) 1491–1502.
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