
Bell Laboratories
Murray Hill, New Jersey 07974

Computing Science Technical Report No. 118

Awk � A Pattern Scanning and Processing Language
Programmer’s Manual

Alfred V. Aho
Brian W. Kernighan
Peter J. Weinberger

September 30, 2015

Awk � A Pattern Scanning and Processing Language
Programmer’s Manual

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language that allows many tasks of information retrieval,
data processing, and report generation to be specified simply. Anawk program is a
sequence of pattern-action statements that searches a set of files for lines matching any of
the specified patterns and executes the action associated with each matching pattern. For
example, the pattern

$1 == "name"

is a completeawk program that prints all input lines whose first field is the stringname;
the action

{ print $1, $2 }

is a complete program that prints the first and second fields of each input line; and the
pattern-action statement

$1 == "address" { print $2, $3 }

is a complete program that prints the second and third fields of each input line whose first
field is address .

Awk patterns may include arbitrary combinations of regular expressions and com-
parison operations on strings, numbers, fields, variables, and array elements. Actions
may include the same pattern-matching constructions as in patterns as well as arithmetic
and string expressions; assignments;if-else , while and for statements; function
calls; and multiple input and output streams.

This manual describes the version ofawk released in June, 1985.

September 30, 2015

Awk � A Pattern Scanning and Processing Language
Programmer’s Manual

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. Basic Awk

Awk is a programming language for information retrieval and data manipulation. Since it was first
introduced in 1979,awk has become popular even among people with no programming background. This
manual begins with the basics ofawk, and is intended to make it easy for anyone to get started; the rest of
the manual describes the complete language and is somewhat less tutorial. For the experiencedawk user,
Appendix A contains a summary of the language; Appendix B contains a synopsis of the new features
added to the language in the June, 1985 release.

1.1. Program Structure

The basic operation ofawk is to scan a set of input lines one after another, searching for lines that
match any of a set of patterns or conditions that the user has specified. For each pattern, an action can be
specified; this action will be performed on each line that matches the pattern. Accordingly, anawk pro-
gram is a sequence of pattern-action statements of the form

pattern { action }
pattern { action }
...

The third program in the abstract,

$1 == "address" { print $2, $3 }

is a typical example, consisting of one pattern-action statement. Each line of input is matched against each
of the patterns in turn. For each pattern that matches, the associated action (which may involve multiple
steps) is executed. Then the next line is read and the matching starts over. This process typically continues
until all the input has been read.

Either the pattern or the action in a pattern-action statement may be omitted. If there is no action
with a pattern, as in

$1 == "name"

the matching line is printed. If there is no pattern with an action, as in

{ print $1, $2 }

then the action is performed for every input line. Since patterns and actions are both optional, actions are
enclosed in braces to distinguish them from patterns.

1.2. Usage

There are two ways to run anawk program. You can type the command

awk ’ pattern-action statements’ optional list of input files

to execute thepattern-action statementson the set of named input files. For example, you could say

- 2 -

awk ’{ print $1, $2 }’ data1 data2

If no files are mentioned on the command line, theawk interpreter will read the standard input. Notice that
the pattern-action statements are enclosed in single quotes. This protects characters like$ from being inter-
preted by the shell and also allows the program to be longer than one line.

The arrangement above is convenient when theawk program is short (a few lines). If the program is
long, it is often more convenient to put it into a separate file, saymyprogram , and use the-f option to
fetch it:

awk -f myprogram optional list of input files

Any filename can be used in place ofmyprogram .

1.3. Fields

Awk normally reads its input one line at a time; it splits each line into a sequence offields, where, by
default, a field is a string of non-blank, non-tab characters.

As input for many of theawk programs in this manual, we will use the following file,countries .
Each line contains the name of a country, its area in thousands of square miles, its population in millions,
and the continent where it is, for the ten largest countries in the world. (Data are from 1978; the U.S.S.R.
has been arbitrarily placed in Asia.)

USSR 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

The wide space between fields is a tab in the original input; a single blank separatesNorth andSouth
from America . This file is typical of the kind of data thatawk is good at processing� a mixture of
words and numbers separated into fields by blanks and tabs.

The number of fields in a line is determined by thefield separator. Fields are normally separated by
sequences of blanks and/or tabs, in which case the first line ofcountries would have 4 fields, the sec-
ond 5, and so on. It’s possible to set the field separator to just tab, so each line would have 4 fields, match-
ing the meaning of the data; we’ll show how to do this shortly. For the time being, we’ll use the default:
fields separated by blanks and/or tabs.

The first field within a line is called$1 , the second$2 , and so forth. The entire line is called$0 .

1.4. Printing

If the pattern in a pattern-action statement is missing, the action is executed for all input lines. The
simplest action is to print each line; this can be accomplished by theawk program consisting of a single
print statement:

{ print } (P.1)

so the command

awk ’{ print }’ countries

prints each line ofcountries , thus copying the file to the standard output.

In the remainder of this paper, we shall only showawk programs, without the command line that
invokes them. Each complete program is identified by(P. n) in the right margin; in each case, the pro-
gram can be run either by enclosing it in quotes as the first argument of theawk command as shown above,
or by putting it in a file and invokingawk with the -f flag, as discussed in Section 1.2. In an example, if

- 3 -

no input is mentioned, it is assumed to be the filecountries .

Theprint statement can be used to print parts of a record; for instance, the program

{ print $1, $3 } (P.2)

prints the first and third fields of each input line. Thus

awk ’{ print $1, $3 }’ countries

produces as output the sequence of lines:

USSR 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

When printed, items separated by a comma in theprint statement are separated by theoutput field sepa-
rator , which by default is a single blank. Each line printed is terminated by theoutput record separator,
which by default is a newline.

1.5. Formatted Printing

For more carefully formatted output,awk provides a C-likeprintf statement

printf format, expr1, expr2, ... , exprn

which prints theexpri ’s according to the specification in the stringformat. For example, theawk program

{ printf "%10s %6d\n", $1, $3 } (P.3)

prints the first field ($1) as a string of 10 characters (right justified), then a space, then the third field ($3)
as a decimal number in a six-character field, then a newline (\n). With input from file countries , pro-
gram(P.3) prints an aligned table:

USSR 262
Canada 24

China 866
USA 219

Brazil 116
Australia 14

India 637
Argentina 26

Sudan 19
Algeria 18

With printf , no output separators or newlines are produced automatically; you must create them your-
self, which is the purpose of the\n in the format specification. Section 4.3 contains a full description of
printf .

1.6. Built-In Variables

Besides reading the input and splitting it into fields,awk counts the number of lines read and the
number of fields within the current line; you can use these counts in yourawk programs. The variableNR
is the number of the current input line, andNF is the number of fields. So the program

{ print NR, NF } (P.4)

prints the number of each line and how many fields it has, while

- 4 -

{ print NR, $0 } (P.5)

prints each line preceded by its line number.

1.7. Simple Patterns

You can select specific lines for printing or other processing with simple patterns. For example, the
operator== tests for equality. To print the lines for which the fourth field equals the stringAsia we can
use the program consisting of the single pattern:

$4 == "Asia" (P.6)

With the filecountries as input, this program yields

USSR 8650 262 Asia
China 3692 866 Asia
India 1269 637 Asia

The complete set of comparisons is>, >=, <, <=, == (equal to) and!= (not equal to). These comparisons
can be used to test both numbers and strings. For example, suppose we want to print only countries with
more than 100 million population. The program

$3 > 100 (P.7)

is all that is needed (remember that the third field is the population in millions); it prints all lines in which
the third field exceeds 100.

You can also use patterns called ‘‘regular expressions’’ to select lines. The simplest form of a regu-
lar expression is a string of characters enclosed in slashes:

/US/ (P.8)

This program prints each line that contains the (adjacent) lettersUS anywhere; with filecountries as
input, it prints

USSR 8650 262 Asia
USA 3615 219 North America

We will have a lot more to say about regular expressions in §2.4.

There are two special patterns,BEGIN andEND, that ‘‘match’’ before the first input line has been
read and after the last input line has been processed. This program usesBEGIN to print a title:

BEGIN { print "Countries of Asia:" }
/Asia/ { print " ", $1 } (P.9)

The output is

Countries of Asia:
USSR
China
India

1.8. Simple Arithmetic

In addition to the built-in variables likeNF andNR, awk lets you define your own variables, which
you can use for storing data, doing arithmetic, and the like. To illustrate, consider computing the total pop-
ulation and the average population represented by the data in filecountries :

{ sum = sum + $3 } (P.10)
END { print "Total population is", sum, "million"

print "Average population of", NR, "countries is", sum/NR }

The first action accumulates the population from the third field; the second action, which is executed after
the last input, prints the sum and average:

- 5 -

Total population is 2201 million
Average population of 10 countries is 220.1

1.9. A Handful of Useful ‘‘One-liners’’

Althoughawk can be used to write large programs of some complexity, many programs are not much
more complicated than what we’ve seen so far. Here is a collection of other short programs that you might
find useful and/or instructive. They are not explained here, but any new constructs do appear later in this
manual.

Print last field of each input line:
{ print $NF } (P.11)

Print 10th input line:
NR == 10 (P.12)

Print last input line:
{ line = $0}

END { print line } (P.13)

Print input lines that don’t have 4 fields:
NF != 4 { print $0, "does not have 4 fields" } (P.14)

Print input lines with more than 4 fields:
NF > 4 (P.15)

Print input lines with last field more than 4:
$NF > 4 (P.16)

Print total number of input lines:
END { print NR }

Print total number of fields:
{ nf = nf + NF }

END { print nf } (P.17)

Print total number of input characters:
{ nc = nc + length($0) }

END { print nc + NR } (P.18)
(Adding NR includes in the total the number of newlines.)

Print the total number of lines that containAsia :
/Asia/ { nlines++ }
END { print nlines } (P.19)

(The statementnlines++ has the same effect asnlines = nlines + 1 .)

1.10. Errors

If you make an error in yourawk program, you will generally get a message like

awk: syntax error near source line 2
awk: bailing out near source line 2

The first message means that you have made a grammatical error that was finally detected near the line
specified; the second indicates that no recovery was possible. Sometimes you will get a little more help
about what the error was, for instance a report of missing braces or unbalanced parentheses.

The ‘‘bailing out’’ message means that because of the syntax errorsawk made no attempt to execute
your program. Some errors may be detected when your program is running. For example, if you try to
divide a number by zero,awk will stop processing and report the input line number and the line number in
the program.

- 6 -

2. Patterns

In a pattern-action statement, the pattern is an expression that selects the input lines for which the
associated action is to be executed. This section describes the kinds of expressions that may be used as pat-
terns.

2.1. BEGIN and END

The special patternBEGIN matches before the first input record is read, so any statements in the
action part of aBEGIN are done once beforeawk starts to read its first input file. The patternENDmatches
the end of the input, after the last file has been processed.BEGIN andENDprovide a way to gain control
for initialization and wrapup.

The field separator is stored in a built-in variable calledFS. AlthoughFS can be reset at any time,
usually the only sensible place is in aBEGIN section, before any input has been read. For example, the fol-
lowing awk program usesBEGIN to set the field separator to tab (\t) and to put column headings on the
output. The secondprintf statement, which is executed for each input line, formats the output into a
table, neatly aligned under the column headings. TheENDaction prints the totals. Notice that a long line
can be continued after a comma.)

BEGIN { FS = "\t"
printf "%10s %6s %5s %s\n",

"COUNTRY", "AREA", "POP", "CONTINENT" }
{ printf "%10s %6d %5d %s\n", $1, $2, $3, $4

area = area + $2; pop = pop + $3 }
END { printf "\n%10s %6d %5d\n", "TOTAL", area, pop } (P.20)

With the filecountries as input,(P.20) produces

COUNTRY AREA POP CONTINENT
USSR 8650 262 Asia

Canada 3852 24 North America
China 3692 866 Asia

USA 3615 219 North America
Brazil 3286 116 South America

Australia 2968 14 Australia
India 1269 637 Asia

Argentina 1072 26 South America
Sudan 968 19 Africa

Algeria 920 18 Africa

TOTAL 30292 2201

2.2. Relational Expressions

An awk pattern can be any expression involving comparisons between strings of characters or num-
bers. Awk has six relational operators, and two regular expression matching operators~ (tilde) and!~ that
will be discussed in the next section.

In a comparison, if both operands are numeric, a numeric comparison is made; otherwise the operands are
compared as strings. (Every value might be either a number or a string; usuallyawk can tell what was
intended. The full story is in §3.4.) Thus, the pattern$3>100 selects lines where the third field exceeds
100, and

- 7 -

TABLE 1. COMPARISONOPERATORS
__
OPERATOR MEANING_______________________________

< less than
<= less than or equal to
== equal to
!= not equal to
>= greater than or equal to
> greater than
˜ matches
!˜ does not match_______________________________













$1 >= "S" (P.21)

selects lines that begin with anS, T, U, etc., which in our case are

USA 3615 219 North America
Sudan 968 19 Africa

In the absence of any other information, fields are treated as strings, so the program

$1 == $4 (P.22)

will compare the first and fourth fields as strings of characters, and with the filecountries as input, will
print the single line for which this test succeeds:

Australia 2968 14 Australia

If both fields appear to be numbers, the comparisons are done numerically.

2.3. Regular Expressions

Awk provides more powerful patterns for searching for strings of characters than the comparisons
illustrated in the previous section. These patterns are calledregular expressions, and are like those in the
Unix" programsegrepandlex.

The simplest regular expression is a string of characters enclosed in slashes, like

/Asia/ (P.23)

Program(P.23) prints all input lines that contain any occurrence of the stringAsia . (If a line contains
Asia as part of a larger word likeAsian or Pan-Asiatic , it will also be printed.)

If re is a regular expression, then the pattern

/ re/

matches any line that contains a substring specified by the regular expressionre. To restrict the match to a
specific field, use the matching operators~ (for matches) and!~ (for does not match):

$4 ~ /Asia/ { print $1 } (P.24)

prints the first field of all lines in which the fourth field matchesAsia , while

$4 !~ /Asia/ { print $1 } (P.25)

prints the first field of all lines in which the fourth field doesnot matchAsia .

In regular expressions the symbols

\ ^ $. [] * + ? () |

have special meanings and are calledmetacharacters. For example, the metacharacters^ and$ match the
beginning and end, respectively, of a string, and the metacharacter. matches any single character. Thus,

- 8 -

/^.$/ (P.26)

will match all lines that contain exactly one character.

A group of characters enclosed in brackets matches any one of the enclosed characters; for example,
/[ABC]/ matches lines containing any one ofA, B or C anywhere. Ranges of letters or digits can be
abbreviated:/[a-zA-Z]/ matches any single letter. If the first character after the[is a^ , this comple-
ments the class so it matches any characternot in the set:/[^a-zA-Z]/ matches any non-letter.

The program

$2 !~ /^[0-9]+$/ (P.27)

prints all lines in which the second field is not a string of one or more digits (^ for beginning of string,
[0-9]+ for one or more digits, and$ for end of string). Programs of this nature are often used for data
validation.

Parentheses() are used for grouping and| is used for alternatives:

/(apple|cherry) (pie|tart)/ (P.28)

matches lines containing any one of the four substringsapple pie , apple tart , cherry pie , or
cherry tart .

To turn off the special meaning of a metacharacter, precede it by a\ (backslash). Thus, the program

/a\$/ (P.29)

will print all lines containing ana followed by a dollar sign.

Awk recognizes the following C escape sequences within regular expressions and strings:

\b backspace
\f formfeed
\n newline
\r carriage return
\t tab
\ ddd octal valueddd
\" quotation mark
\ c any other characterc literally

For example, to print all lines containing a tab use the program

/\t/ (P.30)

Awk will interpret any string or variable on the right side of a~ or !~ as a regular expression. For
example, we could have written program(P.27) as

BEGIN { digits = "^[0-9]+$" }
$2 !~ digits (P.31)

When a literal quoted string like"^[0-9]+$" is used as a regular expression, one extra level of
backslashes is needed to protect regular expression metacharacters. The reason may seem arcane, but it is
merely that one level of backslashes is removed when a string is originally parsed. If a backslash is needed
in front of a character to turn off its special meaning in a regular expression, then that backslash needs a
preceding backslash to protect it in a string.

For example, suppose we wish to match strings containing ana followed by a dollar sign. The regu-
lar expression for this pattern isa\$. If we want to create a string to represent this regular expression, we
must add one more backslash:"a\\$" . The regular expressions on each of the following lines are equiva-
lent.

- 9 -

x ~ "a\\$" x ~ /a\$/
x ~ "a\$" x ~ /a$/
x ~ "a$" x ~ /a$/
x ~ "\\t" x ~ /\t/

Of course, if the context of a matching operator is

x ~ $1

then the additional level of backslashes is not needed in the first field.

The precise form of regular expressions and the substrings they match is given in Table 2. The unary
operators* , +, and? have the highest precedence, then concatenation, and then alternation| . All operators
are left associative.

TABLE 2. Awk REGULAR EXPRESSIONS
__
EXPRESSION MATCHES__________________________________

c any non-metacharacterc
\c characterc literally
ˆ beginning of string
$ end of string
. any character but newline

[s] any character in sets
[ˆs] any character not in sets
r* zero or morer’s
r+ one or morer’s
r? zero or oner
(r) r

r 1 r 2 r 1 thenr 2 (concatenation)
r 1r 2 r 1 or r 2 (alternation)__________________________________




















2.4. Combinations of Patterns

A compound pattern combines simpler patterns with parentheses and the logical operators|| (or),
&& (and),! (not). For example, suppose we wish to print all countries in Asia with a population of more
than 500 million. The following program does this by selecting all lines in which the fourth field isAsia
and the third field exceeds 500:

$4 == "Asia" && $3 > 500 (P.32)

The program

$4 == "Asia" || $4 == "Africa" (P.33)

selects lines with Asia or Africa as the fourth field. Another way to write the latter query is to use a regular
expression with the alternation operator| :

$4 ~ /^(Asia|Africa)$/ (P.34)

The negation operator! has the highest precedence, then&&, and finally || . The operators&& and
|| evaluate their operands from left to right; evaluation stops as soon as truth or falsehood is determined.

2.5. Pattern Ranges

A pattern range consists of two patterns separated by a comma, as in

pat1, pat2 { ... }

In this case, the action is performed for each line between an occurrence ofpat1 and the next occurrence of
pat2 (inclusive). As an example, the pattern

- 10 -

/Canada/, /Brazil/ (P.35)

matches lines starting with the first line that containsCanada up through the next occurrence ofBrazil :

Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America

Similarly, sinceFNRis the number of the current record in the current input file, the program

FNR == 1, FNR == 5 { print FILENAME, $0 } (P.36)

prints the first five records of each input file with the name of the current input file prepended.

3. Actions

In a pattern-action statement, the pattern selects input records; the action determines what is to be
done with them. Actions frequently are simple print or assignment statements, but may be an arbitrary
sequence of statements separated by newlines or semicolons. This section describes the statements that can
make up actions.

3.1. Built-in Variables

Table 3 lists the built-in variables thatawk maintains. Some of these we have already met; others
will be used in this and later sections.

TABLE 3. BUILT-IN VARIABLES
__
VARIABLE MEANING DEFAULT__

ARGC number of command-line arguments -
ARGV array of command-line arguments -
FILENAME name of current input file -
FNR record number in current file -
FS input field separator blank&tab
NF number of fields in current record -
NR number of records read so far -
OFMT output format for numbers %.6g
OFS output field separator blank
ORS output record separator newline
RS input record separator newline__


































3.2. Arithmetic

Actions use conventional arithmetic expressions to compute numeric values. As a simple example,
suppose we want to print the population density for each country. Since the second field is the area in thou-
sands of square miles and the third field is the population in millions, the expression1000 * $3 / $2
gives the population density in people per square mile. The program

{ printf "%10s %6.1f\n", $1, 1000 * $3 / $2 } (P.37)

applied tocountries prints the name of the country and its population density:

- 11 -

USSR 30.3
Canada 6.2

China 234.6
USA 60.6

Brazil 35.3
Australia 4.7

India 502.0
Argentina 24.3

Sudan 19.6
Algeria 19.6

Arithmetic is done internally in floating point. The arithmetic operators are+, - , * , / , %(remainder)
and^ (exponentiation;** is a synonym). Arithmetic expressions can be created by applying these opera-
tors to constants, variables, field names, array elements, functions, and other expressions, all of which are
discussed later. Note thatawk recognizes and produces scientific (exponential) notation:1e6 , 1E6, 10e5 ,
and1000000 are numerically equal.

Awk has C-like assignment statements. The simplest form is the assignment statement

v = e

wherev is a variable or field name, ande is an expression. For example, to compute the total population
and number of Asian countries, we could write

$4 == "Asia" { pop = pop + $3; n = n + 1 } (P.38)
END { print "population of", n,\

"Asian countries in millions is", pop }

(A long awk statement can also be split across several lines by continuing each line with a\ , as in theEND
action of(P.38)). Applied tocountries , (P.38) produces

population of 3 Asian countries in millions is 1765

The action associated with the pattern$4 == "Asia" contains two assignment statements, one to accumu-
late population, and the other to count countries. The variables were not explicitly initialized, yet every-
thing worked properly becauseawk initializes each variable with the string value"" and the numeric value
0.

The assignments in the previous program can be written more concisely using the operators+= and
++:

$4 == "Asia" { pop += $3; ++n }

The operator+= is borrowed from the programming language C. It has the same effect as the longer ver-
sion� the variable on the left is incremented by the value of the expression on the right� but += is
shorter and runs faster. The same is true of the++ operator, which adds 1 to a variable.

The abbreviated assignment operators are+=, -= , *= , /= , %=, and^= . Their meanings are similar:
v op= e has the same effect asv = v op e. The increment operators are++ and-- . As in C, they may be
used as prefix operators (++x) or postfix (x++). If x is 1, theni=++x incrementsx , then setsi to 2,
while i=x++ setsi to 1, then incrementsx . An analogous interpretation applies to prefix and postfix-- .

Assignment and increment and decrement operators may all be used in arithmetic expressions.

We use default initialization to advantage in the following program, which finds the country with the
largest population:

maxpop < $3 { maxpop = $3; country = $1 }
END { print country, maxpop } (P.39)

Note, however, that this program would not be correct if all values of$3 were negative.

Awk provides the built-in arithmetic functions shown in Table 4.
x andy are arbitrary expressions. The functionrand() returns a pseudo-random floating point number in
the range (0,1), andsrand(x) can be used to set the seed of the generator. Ifsrand() has no argument,

- 12 -

TABLE 4. BUILT-IN ARITHMETIC FUNCTIONS
__
FUNCTION VALUE RETURNED__
atan2(y,x) arctangent ofy/ x in the range− À to À

cos(x) cosine ofx, with x in radians
exp(x) exponential function ofx
int(x) integer part ofx truncated towards 0
log(x) natural logarithm ofx
rand() random number between 0 and 1
sin(x) sine ofx, with x in radians
sqrt(x) square root ofx
srand(x) x is new seed forrand()__















the seed is derived from the time of day.

3.3. Strings and String Functions

A string constant is created by enclosing a sequence of characters inside quotation marks, as in
"abc" or "hello, everyone" . String constants may contain the C escape sequences for special char-
acters listed in §2.3.

String expressions are created by concatenating constants, variables, field names, array elements,
functions, and other expressions. The program

{ print NR ":" $0 } (P.40)

prints each record preceded by its record number and a colon, with no blanks. The three strings represent-
ing the record number, the colon, and the record are concatenated and the resulting string is printed. The
concatenation operator has no explicit representation other than juxtaposition.

Awk provides the built-in string functions shown in Table 5. In this table,r represents a regular
expression (either as a string or as/ r/), s andt string expressions, andn andp integers.

TABLE 5. BUILT-IN STRING FUNCTIONS
__

FUNCTION DESCRIPTION___
gsub(r,s) substitutes for r globally in current record, return number of substitutions
gsub(r,s,t) substitutes for r globally in stringt, return number of substitutions
index(s,t) return position of stringt in s, 0 if not present
length return length of$0
length(s) return length ofs
split(s,a) split s into arraya on FS, return number of fields
split(s,a,r) split s into arraya on regular expressionr, return number of fields
sprintf(fmt,expr-list) returnexpr-list formatted according to format stringfmt
sub(r,s) substitutes for first r in current record, return number of substitutions
sub(r,s,t) substitutes for first r in t, return number of substitutions
substr(s,p) return suffix ofs starting at positionp
substr(s,p,n) return substring ofs of lengthn starting at positionp___



















The functionssub andgsub are patterned after the substitute command in the text editored. The
function gsub(r, s, t) replaces successive occurrences of substrings matched by the regular expressionr
with the replacement strings in the target stringt. (As in ed, leftmost longest matches are used.) It returns
the number of substitutions made. The functiongsub(r, s) is a synonym forgsub(r, s,$0) . For
example, the program

{ gsub(/USA/, "United States"); print } (P.41)

will transcribe its input, replacing occurrences of ‘‘USA’’ by ‘‘United States’’. Thesub functions are

- 13 -

similar, except that they only replace the first matching substring in the target string.

The functionindex(s, t) returns the leftmost position where the stringt begins ins, or zero if t
does not occur ins. The first character in a string is at position 1. For example,

index("banana", "an")

returns 2.

The length function returns the number of characters in its argument string; thus,

{ print length($0), $0 } (P.42)

prints each record, preceded by its length. ($0 does not include the input record separator.) The program

length($1) > max { max = length($1); name = $1 }
END { print name } (P.43)

applied to the filecountries prints the longest country name:

Australia

The functionsprintf(format, expr1, expr2, ... , exprn) returns (without printing) a string containing
expr1, expr2, ..., exprn formatted according to theprintf specifications in the stringformat. Section 4.3
contains a complete specification of the format conventions. Thus, the statement

x = sprintf("%10s %6d", $1, $2)

assigns tox the string produced by formatting the values of$1 and$2 as a ten-character string and a deci-
mal number in a field of width at least six;x may be used in any subsequent computation.

The functionsubstr(s, p, n) returns the substring ofs that begins at positionp and is at mostn
characters long. Ifsubstr(s, p) is used, the substring goes to the end ofs; that is, it consists of the suf-
fix of s beginning at positionp. For example, we could abbreviate the country names incountries to
their first three characters by invoking the program

{ $1 = substr($1, 1, 3); print } (P.44)

on this file to produce

USS 8650 262 Asia
Can 3852 24 North America
Chi 3692 866 Asia
USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 South America
Sud 968 19 Africa
Alg 920 18 Africa

Note that setting$1 forcesawk to recompute$0 and thus the fields are separated by blanks (the default
value ofOFS), not by tabs.

Strings are stuck together (concatenated) merely by writing them one after another in an expression.
For example, when invoked on filecountries ,

{ s = s substr($1, 1, 3) " " }
END { print s } (P.45)

prints

USS Can Chi USA Bra Aus Ind Arg Sud Alg

by buildings up a piece at a time from an initially empty string.

- 14 -

3.4. Field Variables

The fields of the current record can be referred to by the field variables$1 , $2 , ..., $NF. Field vari-
ables share all of the properties of other variables� they may be used in arithmetic or string operations,
and may be assigned to. Thus one can divide the second field of the filecountries by 1000 to convert
the area from thousands to millions of square miles:

{ $2 /= 1000; print } (P.46)

or assign a new string to a field:

BEGIN { FS = OFS = "\t" }
$4 == "North America" { $4 = "NA" }
$4 == "South America" { $4 = "SA" } (P.47)

{ print }

The BEGIN action in(P.47) resets the input field separatorFS and the output field separatorOFSto a
tab. Notice that theprint in the fourth line of(P.47) prints the value of$0 after it has been modified
by previous assignments.

Fields can be accessed by expressions. For example,$(NF-1) is the second last field of the current
record. The parentheses are needed: the value of$NF-1 is 1 less than the value in the last field.

A field variable referring to a nonexistent field, e.g.,$(NF+1) has as its initial value the empty
string. A new field can be created, however, by assigning a value to it. For example, the following pro-
gram invoked on the filecountries creates a fifth field giving the population density:

BEGIN { FS = OFS = "\t" }
{ $5 = 1000 * $3 / $2; print } (P.48)

The number of fields can vary from record to record, but there is usually an implementation limit of
100 fields per record.

3.5. Number or String?

Variables, fields and expressions can have both a numeric value and a string value. They take on
numeric or string values according to context. For example, in the context of an arithmetic expression like

pop += $3

pop and$3 must be treated numerically, so their values will becoercedto numeric type if necessary.

In a string context like

print $1 ":" $2

$1 and$2 must be strings to be concatenated, so they will be coerced if necessary.

In an assignmentv = eor v op= e, the type ofv becomes the type ofe.

In an ambiguous context like

$1 == $2

the type of the comparison depends on whether the fields are numeric or string, and this can only be deter-
mined when the program runs; it may well differ from record to record.

In comparisons, if both operands are numeric, the comparison is numeric; otherwise, operands are
coerced to strings, and the comparison is made on the string values. All field variables are of type string; in
addition, each field that contains only a number is also considered numeric. This determination is done at
run time. For example, the comparison ‘‘$1 == $2 ’’ will succeed on any pair of the inputs

1 1.0 +1 0.1e+1 10E-1 1e2 10e1 001

but fail on the inputs

- 15 -

(null) 0
(null) 0.0
0a 0
1e50 1.0e50

There are two idioms for coercing an expression of one type to the other:

number "" concatenate a null string to anumber to coerce it to type string
string + 0 add zero to astring to coerce it to type numeric

Thus, to force a string comparison between two fields, say

$1 "" == $2 "" (P.49)

The numeric value of a string is the value of any prefix of the string that looks numeric; thus the
value of12.34x is 12.34, while the value ofx12.34 is zero. The string value of an arithmetic expres-
sion is computed by formatting the string with the output format conversionOFMT.

Uninitialized variables have numeric value 0 and string value"" . Nonexistent fields and fields that
are explicitly null have only the string value"" ; they are not numeric.

3.6. Control Flow Statements

Awk providesif-else , while , andfor statements, and statement grouping with braces, as in C.

The if statement syntax is

if (expression) statement1 else statement2

Theexpressionacting as the conditional has no restrictions; it can include the relational operators<, <=, >,
>=, ==, and!= ; the regular expression matching operators~ and!~ ; the logical operators|| , &&, and! ;
juxtaposition for concatenation; and parentheses for grouping.

In the if statement, theexpressionis first evaluated. If it is non-zero and non-null,statement1 is
executed; otherwisestatement2 is executed. Theelse part is optional.

A single statement can always be replaced by a statement list enclosed in braces. The statements in
the statement list are terminated by newlines or semicolons.

Rewriting the maximum population program(P.39) from §3.1 with anif statement results in

{ if (maxpop < $3) {
maxpop = $3
country = $1 (P.50)

}
}
END { print country, maxpop }

Thewhile statement is exactly that of C:

while (expression) statement

The expressionis evaluated; if it is non-zero and non-null thestatementis executed and theexpressionis
tested again. The cycle repeats as long as theexpressionis non-zero. For example, to print all input fields
one per line,

{ i = 1
while (i <= NF) {

print $i (P.51)
i++

}
}

- 16 -

Thefor statement is like that of C:

for (expression1; expression; expression2) statement

has the same effect as

expression1
while (expression) {

statement
expression2

}

so

{ for (i = 1; i <= NF; i++) print $i } (P.52)

does the same job as thewhile example above. An alternate version of thefor statement is described in
the next section.

Thebreak statement causes an immediate exit from an enclosingwhile or for ; the continue
statement causes the next iteration to begin.

Thenext statement causesawk to skip immediately to the next record and begin matching patterns
starting from the first pattern-action statement.

Theexit statement causes the program to behave as if the end of the input had occurred; no more
input is read, and theENDaction, if any, is executed. Within theENDaction,

exit expr

causes the program to return the value ofexpr as its exit status. If there is noexpr, the exit status is zero.

3.7. Arrays

Awk provides one-dimensional arrays. Arrays and array elements need not be declared; like vari-
ables, they spring into existence by being mentioned. An array subscript may be a number or a string.

As an example of a conventional numeric subscript, the statement

x[NR] = $0

assigns the current input line to theNRth element of the arrayx . In fact, it is possible in principle (though
perhaps slow) to read the entire input into an array with theawk program

{ x[NR] = $0 }
END { ... processing ...}

The first action merely records each input line in the arrayx , indexed by line number; processing is done in
theENDstatement.

Array elements may also be named by nonnumeric values, a facility that givesawk a capability rather
like the associative memory of Snobol tables. For example, the following program accumulates the total
population ofAsia andAfrica into the associative arraypop . TheENDaction prints the total popula-
tion of these two continents.

/Asia/ { pop["Asia"] += $3 } (P.53)
/Africa/ { pop["Africa"] += $3 }
END { print "Asian population in millions is", pop["Asia"]

print "African population in millions is", pop["Africa"] }

Oncountries , (P.53) generates

Asian population in millions is 1765
African population in millions is 37

In program(P.53) , if we had usedpop[Asia] instead ofpop["Asia"] the expression would have
used the value of the variableAsia as the subscript, and since the variable is uninitialized, the values
would have been accumulated inpop[""] .

- 17 -

Suppose our task is to determine the total area in each continent of the filecountries . Any
expression can be used as a subscript in an array reference. Thus

area[$4] += $2

uses the string in the fourth field of the current input record to index the arrayarea and in that entry accu-
mulates the value of the second field:

BEGIN { FS = "\t" }
{ area[$4] += $2 } (P.54)

END { for (name in area)
print name, area[name] }

Invoked oncountries , (P.54) produces

South America 4358
Africa 1888
Asia 13611
Australia 2968
North America 7467

(P.54) uses a form of thefor statement that iterates over all defined subscripts of an array:

for (i in array) statement

executesstatementwith the variablei set in turn to each value ofi for which array[i] has been
defined. The loop is executed once for each defined subscript, in a random order. Chaos will result ifi is
altered during the loop.

Awk does not provide multi-dimensional arrays so you cannot writex[i,j] or x[i][j] . You
can, however, create your own subscripts by concatenating row and column values with a suitable separa-
tor. For example,

for (i = 1; i <= 10; i++)
for (j = 1; j <= 10; j++)

arr[i "," j] = ...

creates an array whose subscripts have the formi,j , such as1,1 or 1,2 . (The comma distinguishes a
subscript like1,12 from one like11,2 .)

You can determine whether a particular subscripti occurs in an arrayarr by testing the conditioni
in arr , as in

if ("Africa" in area) ...

This condition performs the test without the side effect of creatingarea["Africa"] , which would hap-
pen if we used

if (area["Africa"] != "") ...

Note that neither is a test of whether the arrayarea contains an element with value"Africa" .

It is also possible to split any string into fields in the elements of an array using the built-in function
split . The function

split("s1:s2:s3", a, ":")

splits the strings1:s2:s3 into three fields, using the separator: and storings1 in a[1] , s2 in a[2] ,
ands3 in a[3] . The number of fields found, here 3, is returned as the value ofsplit . The third argu-
ment ofsplit is a regular expression to be used as the field separator. If the third argument is missing,
FS is used as the field separator.

An array element may be deleted with thedelete statement:

delete arrayname[subscript]

- 18 -

3.8. User-Defined Functions

Awk provides user-defined functions. A function is defined as

func name(argument-list) {
statements

}

The definition can occur anywhere a pattern-action statement can. The argument list is a list of variable
names separated by commas; within the body of the function these variables refer to the actual parameters
when the function is called. There must be no space between the function name and the left parenthesis of
the argument list when the function is called; otherwise it looks like a concatenation. For example, to
define and test the usual recursive factorial function,

func fact(n) {
if (n <= 1)

return 1
else (P.55)

return n * fact(n-1)
}
{ print $1 "! is " fact($1) }

Array arguments are passed by reference, as in C, so it is possible for the function to alter array elements or
create new ones. Scalar arguments are passed by value, however, so the function cannot affect their values
outside. Within a function, formal parameters are local variables butall other variables are global.(You
can have any number of extra formal parameters that are used purely as local variables; because arrays are
passed by reference, however, the local variables can only be scalars.) Thereturn statement is optional,
but the returned value is undefined if execution falls off the end of the function.

3.9. Comments

Comments may be placed inawk programs: they begin with the character# and end at the end of the
line, as in

print x, y # this is a comment

4. Output

The print and printf statements are the two primary constructs that generate output. The
print statement is used to generate quick-and-dirty output;printf is used for more carefully formatted
output.

4.1. Print

The statement

print expr1, expr2, ... , exprn

prints the string value of each expression separated by the output field separator followed by the output
record separator. The statement

print

is an abbreviation for

print $0

To print an empty line use

print ""

- 19 -

4.2. Output Separators

The output field separator and record separator are held in the built-in variablesOFSandORS. Ini-
tially, OFSis set to a single blank andORSto a single newline, but these values can be changed at any time.
For example, the following program prints the first and second fields of each record with a colon between
the fields and two newlines after the second field:

BEGIN { OFS = ":"; ORS = "\n\n" }
{ print $1, $2 } (P.56)

Notice that

{ print $1 $2 } (P.57)

prints the first and second fields with no intervening output field separator, because$1 $2 is a string con-
sisting of the concatenation of the first two fields.

4.3. Printf

Awk’s printf statement is the same as that in C except that thec and* format specifiers are not
supported. Theprintf statement has the general form

printf format, expr1, expr2, ... , exprn

whereformat is a string that contains both information to be printed and specifications on what conversions
are to be performed on the expressions in the argument list, as in Table 6. Each specification begins with a
%, ends with a letter that determines the conversion, and may include

- left-justify expression in its field
width pad field to this width as needed; leading0 pads with zeros
. prec maximum string width or digits to right of decimal point

TABLE 6. CONVERSIONCHARACTERS
__
CHARACTER PRINT EXPRESSIONAS___

d decimal number
e [-]d.ddddddE[+-]dd
f [-]ddd.dddddd
g e or f conversion, whichever is shorter, with

nonsignificant zeros suppressed
o unsigned octal number
s string
x unsigned hexadecimal number
% print a%; no argument is converted___















Here are some examples ofprintf statements along with the corresponding output:

- 20 -

printf "%d", 99/2 49
printf "%e", 99/2 4.950000e+01
printf "%f", 99/2 49.500000
printf "%6.2f", 99/2 49.50
printf "%g", 99/2 49.5
printf "%o", 99 143
printf "%06o", 99 000143
printf "%x", 99 63
printf "|%s|", "January" |January|
printf "|%10s|", "January" | January|
printf "|%-10s|", "January" |January |
printf "|%.3s|", "January" |Jan|
printf "|%10.3s|", "January" | Jan|
printf "|%-10.3s|", "January" |Jan |
printf "%%" %

The default output format of numbers is%.6g ; this can be changed by assigning a new value toOFMT.
OFMTalso controls the conversion of numeric values to strings for concatenation and creation of array sub-
scripts.

4.4. Output into Files

It is possible to print output into files instead of to the standard output. The following program
invoked on the filecountries will print all lines where the population (third field) is bigger than 100
into a file calledbigpop , and all other lines intosmallpop :

$3 > 100 { print $1, $3 >"bigpop" }
$3 <= 100 { print $1, $3 >"smallpop" } (P.58)

Notice that the filenames have to be quoted; without quotes,bigpop andsmallpop are merely uninitial-
ized variables. It is important to note that the files are opened once; each successiveprint or printf
statement adds more data to the corresponding file. If>> is used instead of>, output is appended to the file
rather than overwriting its original contents.

4.5. Output into Pipes

It is also possible to direct printing into a pipe with a command on the other end, instead of a file. ihe
statement

print | " command-line"

causes the output ofprint to be piped into thecommand-line.

Although we have shown them here as literal strings enclosed in quotes, thecommand-lineand file-
names can come from variables, etc., as well.

Suppose we want to create a list of continent-population pairs, sorted alphabetically by continent.
Theawk program below accumulates in an arraypop the population values in the third field for each of the
distinct continent names in the fourth field, prints each continent and its population, and pipes this output
into thesort command.

BEGIN { FS = "\t" }
{ pop[$4] += $3 }

END { for (c in pop) (P.59)
print c ":" pop[c] | "sort" }

Invoked on the filecountries (P.59) yields

- 21 -

Africa:37
Asia:1765
Australia:14
North America:243
South America:142

In all of theseprint statements involving redirection of output, the files or pipes are identified by
their names (that is, the pipe above is literally namedsort), but they are created and opened only once in
the entire run.

There is a limit of the number of files that can be open simultaneously. The statementclose(file)
closes a file or pipe;file is the string used to create it in the first place, as inclose("sort") .

5. Input

There are several ways of providing the input data to anawk programP. The most common arrange-
ment is to put the data into a file, sayawkdata , and then execute

awk ’ P’ awkdata

Awk reads its standard input if no filenames are given; thus, a second common arrangement is to have
another program pipe its output intoawk. For example, the programegrepselects input lines containing a
specified regular expression, but it can do so faster thanawk since this is the only thing it does. We could
therefore invoke the pipe

egrep ’Asia’ countries | awk ’ ...’

Egrep will quickly find the lines containingAsia and pass them on to theawk program for subsequent
processing.

5.1. Input Separators

With the default setting of the field separatorFS, input fields are separated by blanks or tabs, and
leading blanks are discarded, so each of these lines has the same first field:

field1 field2
field1

field1

When the field separator is a tab, however, leading blanks arenot discarded.

The field separator can be set to any regular expression by assigning a value to the built-in variable
FS. For example,

awk ’BEGIN { FS = "(,[\\t]*)|([\\t]+)" } ...’

sets it to an optional comma followed by any number of blanks and tabs.FS can also be set on the com-
mand line with the-F argument:

awk -F’(,[\t]*)|([\t]+)’ ’...’

behaves the same as the previous example. Regular expressions used as field separators will not match null
strings.

5.2. Multi-Line Records

Records are normally separated by newlines, so that each line is a record, but this too can be changed,
though in a quite limited way. If the built-in record-separator variableRSis set to the empty string, as in

BEGIN { RS = "" }

then input records can be several lines long; a sequence of empty lines separates records. A common way
to process multiple-line records is to use

- 22 -

BEGIN { RS = ""; FS = "\n" }

to set the record separator to an empty line and the field separator to a newline. There is a limit, however,
on how long a record can be; it is usually about 2500 characters. Sections 5.3 and 6.2 show other examples
of processing multi-line records.

5.3. The getline Function

Awk’s limited facility for automatically breaking its input into records that are more than one line
long is not adequate for some tasks. For example, if records are not separated by blank lines but by some-
thing more complicated, merely settingRS to null doesn’t work. In such cases, it is necessary to manage
the splitting of each record into fields in the program. Here are some suggestions.

The functiongetline can be used to read input either from the current input or from a file or pipe,
by redirection analogous toprintf . By itself, getline fetches the next input record and performs the
normal field-splitting operations on it. It setsNF, NR, andFNR. getline returns1 if there was a record
present,0 if the end-of-file was encountered, and-1 if some error occurred (such as failure to open a file).

To illustrate, suppose we have input data consisting of multi-line records, each of which begins with
a line beginning withSTARTand ends with a line beginning withSTOP. The followingawk program pro-
cesses these multi-line records, a line at a time, putting the lines of the record into consecutive entries of an
array

f[1] f[2] ... f[nf]

Once the line containingSTOPis encountered, the record can be processed from the data in thef array:

/^START/ {
f[nf=1] = $0
while (getline && $0 !~ /^STOP/)

f[++nf] = $0
now process the data in f[1]...f[nf]
...

}

Notice that this code uses the fact that&& evaluates its operands left to right and stops as soon as one is
true.

The same job can also be done by the following program:

/^START/ && nf==0 { f[nf=1] = $0 }
nf > 1 { f[++nf] = $0 }
/^STOP/ { # now process the data in f[1]...f[nf]

...
nf = 0

}

The statementgetline x reads the next record into the variablex . No splitting is done;NF is not
set. The statement

getline <"file"

reads fromfile instead of the current input. It has no effect onNRor FNR, but field splitting is performed
andNF is set. The statement

getline x <"file"

gets the next record fromfile into x ; no splitting is done, andNF, NRandFNRare untouched.

It is also possible to pipe the output of another command directly intogetline . For example, the
statement

while ("who" | getline)
n++

- 23 -

executeswho and pipes its output intogetline . Each iteration of thewhile loop reads one more line
and increments the variablen, so after thewhile loop terminates,n contains a count of the number of
users. Similarly, the statement

"date" | getline d

pipes the output ofdate into the variabled, thus settingd to the current date.

Table 7 summarizes thegetline function.

TABLE 7. GETLINE FUNCTION
__

FORM SETS__________________________________
getline $0 , NF, NR, FNR
getline var var, NR, FNR
getline <file $0, NF
getline var <file var
cmd getline $0 , NF
cmd getline var var__________________________________











5.4. Command-line Arguments

The command-line arguments are available to anawk program: the arrayARGVcontains the elements
ARGV[0] , ..., ARGV[ARGC-1]; as in C,ARGCis the count.ARGV[0] is the name of the program (gen-
erally awk); the remaining arguments are whatever was provided (excluding the program and any optional
arguments). The following command contains anawk program that echoes the arguments that appear after
the program name:

awk ’
BEGIN {

for (i = 1; i < ARGC; i++)
printf "%s ", ARGV[i]

printf "\n"
exit

}’ $*

The arguments may be modified or added to;ARGCmay be altered. As each input file ends,awk treats the
next non-null element ofARGV(up to the current value ofARGC-1) as the name of the next input file.

There is one exception to the rule that an argument is a filename: if it is of the form

var=value

then the variablevar is set to the valuevalueas if by assignment. Such an argument is not treated as a file-
name. Ifvalue is a string, no quotes are needed.

6. Cooperation with the Rest of the World

Awk gains its greatest power when it is used in conjunction with other programs. Here we describe
some of the ways in whichawk programs cooperate with other commands.

6.1. The system Function

The built-in functionsystem(command-line) executes the commandcommand-line, which may
well be a string computed by, for example, the built-in functionsprintf . The value returned bysystem
is the status return of the command executed.

For example, the program

$1 == "#include" { gsub(/[<>"]/, "", $2); system("cat " $2) } (P.60)

calls the commandcat to print the file named in the second field of every input record whose first field is
#include , after stripping any<, > or " that might be present.

- 24 -

6.2. Cooperation with the Shell

In all the examples thus far, theawk program was in a file and fetched from there using the-f flag,
or it appeared on the command line enclosed in single quotes, as in

awk ’{ print $1 }’ ...

Sinceawk uses many of the same characters as the shell does, such as$ and" , surrounding theawk pro-
gram with single quotes ensures that the shell will pass the entire program unchanged to theawk inter-
preter.

Now, consider writing a commandaddr that will search a fileaddresslist for name, address
and telephone information. Suppose thataddresslist contains names and addresses in which a typical
entry is a multi-line record such as

G. R. Emlin
600 Mountain Avenue
Murray Hill, NJ 07974
201-555-1234

Records are separated by a single blank line.

We want to search the address list by issuing commands like

addr Emlin

That is easily done by a program of the form

awk ’
BEGIN { RS = "" }
/Emlin/
’ addresslist

The problem is how to get a different search pattern into the program each time it is run.

There are several ways to do this. One way is to create a file calledaddr that contains

awk ’
BEGIN { RS = "" }
/’$1’/
’ addresslist

The quotes are critical here: theawk program is only one argument, even though there are two sets of
quotes, because quotes do not nest. The$1 is outside the quotes, visible to the shell, which therefore
replaces it by the patternEmlin when the commandaddr Emlin is invoked.

A second way to implementaddr relies on the fact that the shell substitutes for$ parameters within
double quotes:

awk "
BEGIN { RS = \"\" }
/$1/
" addresslist

Here we must protect the quotes definingRS with backslashes so that the shell passes them on toawk,
uninterpreted by the shell.$1 is recognized as a parameter, however, so the shell replaces it by the pattern
when the commandaddr pattern is invoked.

A third way to implementaddr is to useARGVto pass the regular expression to anawk program
that explicitly reads through the address list withgetline :

 On a Unix system,addr can be made executable by changing its mode with the command:chmod +x addr .

- 25 -

awk ’
BEGIN { RS = ""

while (getline < "addresslist")
if ($0 ~ ARGV[1])

print $0
exit

} ’

All processing is done in theBEGINaction.

Notice that any regular expression can be passed toaddr ; in particular, it is possible to retrieve by
parts of an address or telephone number as well as by name.

7. Generating Reports

Awk is especially useful for producing reports that summarize and format information. Suppose we
wish to produce a report from the filecountries in which we list the continents alphabetically, and after
each continent its countries in decreasing order of population:

Africa:
Sudan 19
Algeria 18

Asia:
China 866
India 637
USSR 262

Australia:
Australia 14

North America:
USA 219
Canada 24

South America:
Brazil 116
Argentina 26

As with many data processing tasks, it is much easier to produce this report in several stages. First,
we create a list of continent-country-population triples, in which each field is separated by a colon. This
can be done with the following programtriples , which uses an arraypop indexed by subscripts of the
form ‘‘continent:country’’ to store the population of a given country. The print statement in theENDsec-
tion creates the list of continent-country-population triples that are piped to the system sort routine.

BEGIN { FS = "\t" }
{ pop[$4 ":" $1] += $3 }

END { for (cc in pop) (P.61)
print cc ":" pop[cc] | "sort -t: +0 -1 +2nr" }

The arguments for the sort command deserve special mention. The-t: argument tellssort to use: as
its field separator. The+0 -1 arguments make the first field the primary sort key. In general,+ i − j makes
fields i + 1, i + 2, ..., j the sort key. If− j is omitted, the fields fromi + 1 to the end of the record are used.
The +2nr argument makes the third field, numerically decreasing, the secondary sort key (n is for
numeric, r for reverse order). The Unix Programmer’s Manual contains a complete description of the
sort command. Invoked on the filecountries , (P.61) produces as output

- 26 -

Africa:Sudan:19
Africa:Algeria:18
Asia:China:866
Asia:India:637
Asia:USSR:262
Australia:Australia:14
North America:USA:219
North America:Canada:24
South America:Brazil:116
South America:Argentina:26

This output is in the right order but the wrong format. To transform the output into the desired form
we run it through a secondawk programformat :

BEGIN { FS = ":" }
{ if ($1 != prev) {

print "\n" $1 ":"
prev = $1 (P.62)

}
printf "\t%-10s %6d\n", $2, $3

}

This is a ‘‘control-break’’ program that prints only the first occurrence of a continent name and formats the
country-population lines associated with that continent in the desired manner. The command

awk -f triples countries | awk -f format

gives us our desired report. As this example suggests, complex data transformation and formatting tasks
can often be reduced to a few simpleawk’s andsort’s.

As an exercise, add to the population report subtotals for each continent and a grand total.

8. Additional Examples

Awk has been used in surprising ways. We have seenawk programs that implement database sys-
tems and a variety of compilers and assemblers, in addition to the more traditional tasks of information
retrieval, data manipulation, and report generation. Invariably, theawk programs are significantly shorter
than equivalent programs written in more conventional programming languages such as Pascal or C. In this
section, we will present a few more examples to illustrate some additionalawk programs.

1. Word frequencies. Our first example illustrates associative arrays for counting. Suppose we want
to count the number of times each word appears in the input, where a word is any contiguous sequence of
non-blank, non-tab characters. The following program prints the word frequencies, sorted in decreasing
order.

{ for (w = 1; w <= NF; w++) count[$w]++ } (P.63)
END { for (w in count) print count[w], w | "sort -nr" }

The first statement uses the arraycount to accumulate the number of times each word is used. Once the
input has been read, the secondfor loop pipes the final count along with each word into the sort com-
mand.

2. Accumulation. Suppose we have two files,deposits andwithdrawals , of records contain-
ing a name field and an amount field. For each name we want to print the net balance determined by sub-
tracting the total withdrawals from the total deposits for each name. The net balance can be computed by
the following program:

- 27 -

awk ’
FILENAME == "deposits" { balance[$1] += $2 }
FILENAME == "withdrawals" { balance[$1] -= $2 }
END { for (name in balance)

print name, balance[name]
} ’ deposits withdrawals

The first statement uses the arraybalance to accumulate the total amount for each name in the file
deposits . The second statement subtracts associated withdrawals from each total. If there are only
withdrawals associated with a name, an entry for that name will be created by the second statement. The
ENDaction prints each name with its net balance.

3. Random choice.The following function prints (in order)k random elements from the firstn ele-
ments of the arrayA. In the program,k is the number of entries that still need to be printed, andn is the
number of elements yet to be examined. The decision of whether to print thei th element is determined by
the testrand() < k/n .

func choose(A, k, n) {
for (i = 1; n > 0; i++)

if (rand() < k/n--) {
print A[i]
k--

}
}

}

4. Shell facility. The followingawk program simulates (crudely) the history facility of the Unix sys-
tem shell. A line containing only= re-executes the last command executed. A line beginning with= cmd
re-executes the last command whose invocation included the stringcmd. Otherwise, the current line is exe-
cuted.

$1 == "=" { if (NF == 1)
system(x[NR] = x[NR-1])

else
for (i = NR-1; i > 0; i--) (P.64)

if (x[i] ~ $2) {
system(x[NR] = x[i])
break

}
next }

/./ { system(x[NR] = $0) }

5. Form-letter generation. The following program generates form letters, using a template stored in
a file calledform.letter :

This is a form letter.
The first field is $1, the second $2, the third $3.
The third is $3, second is $2, and first is $1.

and replacement text of this form:

field 1|field 2|field 3
one|two|three
a|b|c

The BEGIN action stores the template in the arraytemplate ; the remaining action cycles through the
input data, usinggsub to replace template fields of the form$n with the corresponding data fields.

- 28 -

BEGIN { FS = "|"
while (getline <"form.letter")

line[++n] = $0
}
{ for (i = 1; i <= n; i++) {

s = line[i]
for (j = 1; j <= NF; j++)

gsub("\\$"j, $j, s)
print s

}
}

6. Random sentences. Our final problem is to generate random sentences, given a grammar. Given
input like

S -> NP VP
NP -> AL N
NP -> N
N -> John
N -> Mary
AL -> A
AL -> A AL
A -> Wee
A -> Little
VP -> V AvL
V -> runs
V -> walks
AvL -> Av
AvL -> ML Av
Av -> quickly
Av -> slowly
ML -> M
ML -> ML M
M -> very
gen S

it will generate sentences like

John runs quickly
Wee Little Mary runs quickly
Mary runs very very slowly

The following program presents a fairly naive approach: each left-hand side is remembered in an associa-
tive array, along with the components of its right-hand side. When agen command occurs, a random
instance of that left-hand side is expanded recursively.

{ if ($1 == "gen") {
gen($2)
print ""

} else if ($2 == "->") {
i = ++lhsct[$1]
rhsct[$1 "," i] = NF-2
for (j = 3; j <= NF; j++)

rhslist[$1 "," i "," j-2] = $j
} else

print "Unrecognized command: " $0
}

- 29 -

func gen(sym, i, j) { # i and j are local variables
if (sym in lhsct) {

i = int(lhsct[sym] * rand()) + 1
for (j = 1; j <= rhsct[sym "," i]; j++)

gen(rhslist[sym "," i "," j])
} else

printf "%s ", sym
}

Notice the use of extra arguments in the list of parameters forgen ; they serve as local variables for that
specific instance of the function.

In all such examples, a prudent strategy is to start with a small version and expand it, trying out each
aspect before moving on to the next.

Further Reading

A technical discussion of the design ofawk may be found inAwk� a pattern scanning and process-
ing language, by A. V. Aho, B. W. Kernighan and P. J. Weinberger, which appeared inSoftware Practice
and Experience, April 1979.

Much of the syntax ofawk is derived from C, described inThe C Programming Language, by B. W.
Kernighan and D. M. Ritchie (Prentice-Hall, 1978).

The functionprintf is described in the C book, and also in Section 2 ofThe Unix Programmer’s
Manual. The programsed, sed, egrep, and lex are also described there, with an explanation of regular
expressions.

The Unix Programming Environment, by B. W. Kernighan and R. Pike (Prentice-Hall, 1984) con-
tains a large number ofawk examples, including illustrations of cooperation withsed and the shell. Jon
Bentley’sProgrammingPearls columns in the June and July 1985 issues ofCACM contain a wide variety
of otherawk examples.

Acknowledgements

We are indebted to Jon Bentley, Lorinda Cherry, Marion Harris, Teresa Alice Hommel, Rob Pike,
Chris Van Wyk, and Vic Vyssotsky for valuable comments on drafts of this manual.

- 30 -

Appendix A: Awk Summary

Command-line

awk ’ program’ filenames
awk -f program-file filenames
awk -Fs set field separator to strings; -Ft sets separator to tab

Patterns

BEGIN
END
/regular expression/
relational expression
pattern&& pattern
pattern pattern
(pattern)
!pattern
pattern, pattern
func name(parameter list) { statement}

Control-flow statements

if (expr) statement[else statement]
if (subscriptin array) statement[else statement]
while (expr) statement
for (expr; expr; expr) statement
for (var in array) statement
break
continue
next
exit [expr]
function-name(expr, expr, ...)
return [expr]

Input-output

close(filename) close file
getline set$0 from next input record; setNF, NR, FNR
getline < file set$0 from next record offile; setNF
getline var setvar from next input record; setNR, FNR
getline var <file setvar from next record offile
print print current record
print expr-list print expressions
print expr-list >file print expressions onfile
printf fmt, expr-list format and print
printf fmt, expr-list >file format and print onfile
system(cmd-line) execute commandcmd-line, return status

In print andprintf above,>>file appends to thefile, and | commandwrites on a pipe. Similarly,command|
getline pipes intogetline . getline returns 0 on end of file, and�1 on error.

String functions

- 31 -

gsub(r, s, t) substitute strings for each substring matching regular expressionr
in string t, return number of substitutions; ift omitted, use$0

index(s, t) return index of stringt in strings, or 0 if not present
length(s) return length of strings
split(s, a, r) split strings into arraya on regular expressionr, return number of fields

if r omitted,FS is used in its place
sprintf(fmt, expr-list) print expr-listaccording tofmt, return resulting string
sub(r, s, t) like gsub except only the first matching substring is replaced
substr(s, i, n) returnn-char substring ofs starting ati; if n omitted, use rest ofs

Arithmetic functions

atan2(y, x) arctangent ofy/ x in radians
cos(expr) cosine (angle in radians)
exp(expr) exponential
int(expr) truncate to integer
log(expr) natural logarithm
rand() random number between 0 and 1
sin(expr) sine (angle in radians)
sqrt(expr) square root
srand(expr) new seed for random number generator; use time of day if noexpr

Operators (increasing precedence)

= += -= *= /= %= ^= assignment
|| logical OR
&& logical AND
~ !~ regular expression match, negated match
< <= > >= != == relationals
blank string concatenation
+ - add, subtract
* / % multiply, divide, mod
+ - ! unary plus, unary minus, logical negation
^ exponentiation (** is a synonym)
++ -- increment, decrement (prefix and postfix)
$ field

Regular expressions (increasing precedence)

c matches non-metacharacterc
\ c matches literal characterc
. matches any character but newline
^ matches beginning of line or string
$ matches end of line or string
[abc...] character class matches any ofabc...
[^ abc...] negated class matches any butabc...and newline
r1| r2 matches eitherr1 or r2
r1r2 concatenation: matchesr1, thenr2
r+ matches one or morer’s
r* matches zero or morer’s
r? matches zero or oner’s
(r) grouping: matchesr

- 32 -

Built-in variables

ARGC number of command-line arguments
ARGV array of command-line arguments (0..ARGC-1)
FILENAME name of current input file
FNR input record number in current file
FS input field separator (default blank)
NF number of fields in current input record
NR input record number since beginning
OFMT output format for numbers (default%.6g)
OFS output field separator (default blank)
ORS output record separator (default newline)
RS input record separator (default newline)

Limits
Any particular implementation ofawk enforces some limits. Here are typical values:

100 fields
2500 characters per input record
2500 characters per output record
1024 characters per individual field
1024 characters perprintf string
400 characters maximum quoted string
400 characters in character class
15 open files
1 pipe
numbers are limited to what can be represented on the local machine, e.g., 1e�38..1e+38

Initialization, comparison, and type coercion

Each variable and field can potentially be a string or a number or both at any time. When a variable is set by the
assignment

var = expr

its type is set to that of the expression. (‘‘Assignment’’ includes+=, -= , etc.) An arithmetic expression is of type
number, a concatenation is of type string, and so on. If the assignment is a simple copy, as in

v1 = v2

then the type ofv1 becomes that ofv2 .

In comparisons, if both operands are numeric, the comparison is made numerically. Otherwise, operands are
coerced to string if necessary, and the comparison is made on strings. The type of any expression can be coerced to
numeric by subterfuges such as

expr + 0

and to string by
expr ""

(i.e., concatenation with a null string).

Uninitialized variables have the numeric value0 and the string value"" . Accordingly, if x is uninitialized,
if (x) ...

is false, and
if (!x) ...
if (x == 0) ...
if (x == "") ...

are all true. But note that
if (x == "0") ...

is false.

The type of a field is determined by context when possible; for example,
$1++

clearly implies that$1 is to be numeric, and

- 33 -

$1 = $1 "," $2

implies that$1 and$2 are both to be strings. Coercion will be done as needed.

In contexts where types cannot be reliably determined, e.g.,
if ($1 == $2) ...

the type of each field is determined on input. All fields are strings; in addition, each field that contains only a number
is also considered numeric.

Fields that are explicitly null have the string value"" ; they are not numeric. Non-existent fields (i.e., fields past
NF) are treated this way too.

As it is for fields, so it is for array elements created bysplit() .

Mentioning a variable in an expression causes it to exist, with the value"" as described above. Thus, if
arr[i] does not currently exist,

if (arr[i] == "") ...

causes it to exist with the value"" and thus theif is satisfied. The special construction
if (i in arr) ...

determines ifarr[i] exists without the side effect of creating it if it does not.

- 34 -

Appendix B: A Summary of New Features

This appendix summarizes the new features that have been added toawk for the June, 1985 release.

Regular expressions may be created dynamically and stored in variables. The field separatorFS may be a regu-
lar expression, as may the third argument ofsplit() .

Functions have been added. The declaration is
func name(arglist) { body }

Scalar arguments are passed by value, arrays by reference. Within the body, parameters are locals; all other variables
are global.

return expr

returns a value to the caller; a plainreturn returns without a value, as does falling off the end.

getline for multiple input sources:
getline

sets$0 , NR, FNR, NF from the next input record.
getline x

setsx from next input record, setsNRandFNR, butnot $0 andNF.
getline <"file"

sets$0 from file , setsNF, but notNRor FNR.
getline x <"file"

setsx from file ; it has no effect on$0 , NR, NF, etc.
"command" | getline

is like getline <"file" , and
"command" | getline x

is like getline x <"file" .

Command-line arguments are accessible, inARGV[0] ... ARGV[ARGC-1]. These may be altered or aug-
mented at will; the remaining non-null arguments are used as the normal filenames.

New built-in functions include
close(filename)
rand() , srand(expr)
sin(expr) , cos(expr) , atan2(expr, expr)
sub(reg, repl, target) , gsub(reg, repl, target)
system(command-line)

The exponentiation operator^ and the corresponding assignment operator^= have been added.

The condition
i in array

tests whetherarray has a subscript of valuei without creating it.

Thedelete statement deletes an array element.

The variableFNRis the record number in the current input file; the testFNR==1succeeds at the first record of
each new file.

C string escapes like\f , \b , \r , and\123 work as in C.

BEGIN, ENDandfunc declarations may be intermixed with other patterns in any order.

Source lines are now continued after commas,|| and&&; other contexts still require an explicit\ .

Limited Warranty

There is no warranty of merchantability nor any warranty of fitness for a particular purpose nor any other war-
ranty, either express or implied, as to the accuracy of the enclosed materials or as to their suitability for any particular
purpose. Accordingly, the Awk Development Task Force assumes no responsibility for their use by the recipient.
Further, the Task Force assumes no obligation to furnish any assistance of any kind whatsoever, or to furnish any addi-
tional information or documentation.

