
Advanced Quantum Field Theory
problem sheet

Lectures:

1. The Path Integral for free and interacting fields, perturbation

theory, diagram expansion, correlation functions, scattering ampli-

tudes

1. This problem is about calculating multi dimensional Gaussian integrals

Z0 =

∫

dNxe−
1

2
xTAx

where x is a N × 1 column vector and A is an N × N symmetrical
matrix. This can be done by finding the orthogonal matrix O that
diagonalizes A = OTDO and then changing integration variables to

y = Ox (what happens to the Jacobian?). Show that Z0 =
√

(2π)N

detA
.

Define

< xk1 . . . xkm >=
1

Z0

∫

dNx xk1 . . . xkm e−
1

2
xTAx

This can be done by introducing an extra variable (column vector) j
such that

Z0[j] =

∫

dNxe−
1

2
xTAx+jT x

since then

< xk1 . . . xkm >=
1

Z0

d

djk1
. . .

d

djkm
Z0[j]|j=0

where j is put to zero after differentiation. Find an explicit expres-
sion for < xk1xk2xk3xk4 > in terms of elements of the matrix A−1 and
compare this formula with the correlation functions of a free scalar
field.
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2. Modify the integral in the previous problem to include ”interactions”

Z[j] =

∫

dNxe−
1

2
xTAx− g

4!
x4+jT x

where x4 =
∑

k x
4
k. Calculate Z[j] and subsequently < xk1xk2xk3xk4 >

to first order in g.

3. For a free real scalar field in four dimension find the real and imaginary
parts of the propagator. Can you reconstruct the propagator from the
knowledge of the imaginary part only.

4. Solve the equation
(

−∂2 +m2 +
λ

6
ϕ2

)

ϕ = J

order by order about λ = 0. Set ϕ = ϕ(0)+λϕ(1)+λ2ϕ(2)+ . . .. Derive
explicit expressions for ϕ(2) and ϕ(3).

5. Show that

∆(x− x′) =

∫

d4k

(2π)4
eik(x−x′)

k2 +m2 − iǫ

is a solution to

(−∂2x +m2)∆(x− x′) = δ4(x− x′)

i.e. a Green function for the Klein-Gordon operator.

6. Verify that ∆(x− x′) of the previous problem decays exponentially for
spacelike separation.

7. Find the propagator ∆(x−x′) for a (1+1)-dimensional spacetime and
study the large x1 behavior for x0 = 0.

8. For the real, free Klein-Gordon field verify that

〈0|Tϕ(x1)ϕ(x2) |0〉 =
1

i
∆(x1 − x2)

and

〈0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) |0〉 =− [∆(x1 − x2)∆(x3 − x4)

+ ∆(x1 − x3)∆(x2 − x4)

+∆(x1 − x4)∆(x2 − x3)]
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9. For the free, real scalar theory, let Z0(J) = eiW0(J). Evaluate the real
and imaginary parts of W0.

10. A real scalar field has a self interaction Lagrangian density

L =
1

2
gϕ∂µϕ∂µϕ .

Draw the vertex and find the associated vertex factor.

11. A complex scalar field φ interacts with a real scalar field ϕ through the
interaction Lagrangian density L = gϕφ†φ. Use a solid line for the φ
propagator and a dashed line for the ϕ propagator. Draw the vertex
and find the associated vertex factor.

12. A complex scalar field φ interacts with a real scalar field ϕ through the
interaction Lagrangian density L = gϕφ†φ. Assuming that mϕ > 2mφ,
compute the total decay rate of the ϕ particle at tree level.

13. Consider a theory of three real scalar fields A, B and C with the in-
teraction term gABC. Write down the tree-level scattering amplitutde
for each of the following processes

AA→ AA

AA→ AB

AA→ BB

AA→ BC

AB → AB

AB → AC

Your answer should take the form

g2
[

cs
m2

s − s
+

ct
m2

t − t
+

cu
m2

u − u

]

14. Any physical consequences of a field theory should be invariant under
local field redefinitions. In the real scalar theory, make a field redefini-
tion

ϕ→ ϕ+ λϕ2 .
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Work out the Feynman rules for the modified theory and show the tree
level scattering amplitude ϕϕ → ϕϕ is zero, consistent with the fact
that we are really dealing with a free theory.

2. Loop corrections to the propagator and vertices, the effective

action, renormalization

1. Prove the formula

1

Aα1

1 . . . Aαn
n

=
Γ(
∑

i αi)

ΠiΓ(αi)

∫ 1

0

dx1 . . . dxnδ(
∑

i

xi − 1)
Πix

αi−1
i

(
∑

i xiAi)
∑

i αi

2. Show that
∫

ddk kµf(k2) = 0 and evaluate the constant C in
∫

ddk kµkνf(k2) =
Cgµν

∫

ddk k2f(k2). Finally evaluate
∫

ddk kµkνkρkσf(k2).

3. Prove

∫

ddk

(2π)d
(k2)a

(k2 +D)b
=

Γ(b− a− 1
2
d)Γ(a+ 1

2
d)

(4π)
d
2Γ(b)Γ(1

2
d)

D−(b−a− d
2
)

4. For a real scalar field with interaction λϕ4/4!, draw all the contributions
to the two point function G(2) that are of order λ3.

5. For a real scalar field with interaction λϕ4/4!, draw all the contributions
to the four point function G(4) that are of order λ3.

6. Show that for a > 0

∫ 1

0

dx ln

(

1 +
4

a
x(1− x)

)

= −2 +
√
1 + a ln

√
1 + a+ 1√
1 + a− 1

The let z = 4
a
and study the singularity structure in the complex z-

plane. Specifically find for what z the integral is real.

3. Explicit calculations in scalar field theory, dimensional regular-

ization
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1. Consider a four dimensional real scalar field with the Lagrangian

L = −1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 − 1

4!
λϕ4

Compute theO(λ) corrections to the propagator and compute theO(λ)
terms in the coefficients of the k2 term and the m2 term in the expres-
sion for the self-energy Π(k2).

2. Repeat the calculation of the previous problem for the theory of a four
dimensional complex scalar field

L = −∂µφ†∂µφ−m2φ†φ− 1

4
λ(φ†φ)2

3. Calculate the O(λ2) correction to the four point vertex for the real ϕ4

theory. Choose your renormalization condition such that the coupling
constant is λ when all four momenta are on shell and s = 4m2. What
is the O(λ) contribution to the Z factor?

4. Repeat the previous problem for the four dimensional complex φ4 the-
ory.

5. Compute for the six dimensional scalar ϕ3 theory the O(α) corrections
to the two-particle scattering amplitude at threshold. That is, for s =
4m2 and t = u = 0, corresponding to zero three-momentum for both
the incoming and outgoing particles.

4. The renormalization group, effective field theory

1. Given β(λ) = µ∂λ
∂µ
, desceribe the behavior of the hypothetical field

theories for which

β(λF ) = β′(λF ) = 0

or

β(λk) = 0 λk = λF +
a

k
, k = 1, 2, . . .∞

2. Show that

Γ[ϕ] = W [J ]−
∫

ddx Jϕ
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where J(x) is the solution of

δ

δJ(x)
W [J ] = ϕ(x)

3. Suppose that we have a set of fields ϕa(x), and that both the classical
action S[ϕ] and the integration measure Dϕ are invariant under

ϕa(x) →
∫

ddy Rab(x, y)ϕb(y)

for some particular function Rab(x, y). Show that both W [J ] as well as
the quantum action Γ[ϕ] are also invariant.

4. Consider performing the path integral in the presence of a background
field ϕ̄(x). We define

eiW [J,ϕ̄] =

∫

Dϕ eiS[ϕ+ϕ̄]+i
∫
ddxJϕ

ClearlyW [J, 0] is the originalW [J ]. We also define the quantum action
in the presence of the background field

Γ[ϕ, ϕ̄] = W [J, ϕ̄]−
∫

ddx Jϕ

where now J(x) is the solution of

δ

δJ(x)
W [J, ϕ̄] = ϕ(x)

Show that Γ[ϕ, 0] is the original quantum action and that

Γ[ϕ, ϕ̄] = Γ[ϕ+ ϕ̄, 0]

5. Consider ϕ4 theory

L = −1

2
Zϕ∂

µϕ∂µϕ− 1

2
Zmm

2ϕ2 − 1

4!
Zλλµ

ǫϕ4

in 4− ǫ dimensions. Compute the beta function to O(λ2), the anoma-
lous dimension of m to O(λ) and the anomalous dimension of ϕ to
O(λ).
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6. Repeat the the previous problem for the complex φ4 theory

L = −Zφ∂
µφ†∂µφ− Zmm

2φ†φ− 1

4
Zλλµ

ǫ(φ†φ)2

7. Consider the six dimensional Lagrangian density

L = −1

2
Zϕ∂

µϕ∂µϕ− 1

2
Zmm

2ϕ2 + Y ϕ

− 1

2
Zχ∂

µχ∂µχ− 1

2
ZMM

2χ2

+
1

6
Zgµ

ǫ
2ϕ3 +

1

2
Zhhµ

ǫ
2ϕχ2

in 6 − ǫ dimensions, where ϕ and χ are real scalar fields, and Y is
adjusted to make 〈0|ϕ(x) |0〉 = 0. Compute the one-loop contributions
to each of the Z’s in the MS renormalization scheme.
The bare couplings are related to the renormalized ones via

g0 = Z
− 3

2
ϕ Zg g µ

ǫ
2

h0 = Z−1
ϕ Z

− 1

2
χ Zh h µ

ǫ
2

Define

G(g, h, ǫ) =
∞
∑

n=1

Gn(g, h)ǫ
−n ≡ ln(Z

− 3

2
ϕ Zg)

H(g, h, ǫ) =
∞
∑

n=1

Hn(g, h)ǫ
−n ≡ ln(Z−1

ϕ Z
− 1

2
χ Zh)

By requiring g0 and h0 to be independent of µ, and by assuming that
dg

dµ
and dh

dµ
are finite as ǫ→ 0, show that

µ
dg

dµ
= −1

2
ǫg +

1

2
g

(

g
∂G1

∂g
+ h

∂G1

∂h

)

µ
dh

dµ
= −1

2
ǫh+

1

2
h

(

g
∂H1

∂g
+ h

∂H1

∂h

)

Compute the beta functions for g and h. There will be terms of order
g3, gh2 and h3 in βg and terms of order g2h, gh2 and h3 in βh.
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Without loss of generality we can choose g to be positive, h can then
be positive or negative, and the difference is physically significant. For
what numerical range of h/g are βg and βh/h both negative? Why is
this an interesting question?

8. Consider a theory with a single dimensionless coupling g whose beta
function takes the form

β(g) = b1g
2 + b2g

3 + . . .

Then consider a new definition of the coupling g̃ that agrees with the
original definition at lowest order, so that we have g̃ = g + c2g

2 + . . ..
Show that β(g̃) = b1g̃

2 + b2g̃
3 + . . ..

5. Spinors, Grassmann variables, fermionic path integrals

1. Work out the Dirac equation and gamma matrices in 1 + 1 and 2 + 1
dimensions.

6. Explicit calculations with fermions

1. Yukawa theory is defined as a theory of a Dirac fermion and real scalar
field defined by the Lagrangian

L = iψ̄∂/ψ −mψ̄ψ − 1

2
∂µϕ∂µϕ− 1

2
M2ϕ2

+ igϕψ̄γ5ψ − 1

4!
λϕ4

Derive the fermion-loop correction to the scalar propagator. Show that
there is an extra minus sign for a fermion loop as compared to a scalar
loop.

2. Consider changing the interaction term to Lint = gϕψ̄ψ. Show that
renormalizability require us to add a linear and and a cubic term to
cancel tadpoles. Find the one-loop contributions to the renormalizing
Z factor for this theory in the MS scheme.

3. For the theory in the previous problem, compute the one-loop contri-
butions to the beta function for g, λ and κ, where κ is the coefficient of
the ϕ3 interaction that we had to add for renormalizability. Compute
also the contributions to the anomalous dimensions of m, M , ψ and ϕ.
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4. Consider a massless fermion field ψ coupled to a real scalar field ϕ by
eϕψ̄ψ in (1+1)-dimensional spacetime. Show that there is an effective
potential generated

VF =
1

2π
(eϕ)2 ln

ϕ2

M2

after a suitable counterterm has been added.

7. Nonabelian gauge theory

1. In ordinary Quantum Electrodynamics, show that adding a gauge fixing
term

−1

2
ξ−1(∂µAµ)

2

to the Lagrangian results in a propagator

∆µν(k) =
1

k2 − iǫ

(

gµν −
kµkν
k2

+ ξ
kµkν

k2

)

What choice of ξ corresponds to Lorenz gauge ∂µA
µ = 0?

2. Consider the gauge condition

AiA
i = m2

Discuss its validity as a gauge condition and write the corresponding
path integral for Maxwell theory in this gauge.

3. Repeat the previous problem for the gauge condition

∂iA3∂
iA3 = 0

4. In spinor electrodynamics defined by the Lagrangian

L = iZ2ψ̄∂/ψ − Zmψ̄ψ − 1

4
Z3F

µνFµν + Z1eψ̄A/ψ

calculate the Z coefficients to order e2

ǫ
in Rξ guage. In particular, show

that Z1 = Z2 in Lorenz gauge.
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5. Show that a diagram with four external photons is divergent. Why
does the sum of all such diagrams have to be divergence free? (Hint:
gauge invariance).

6. In non-abelian gauge theory the gauge field Aa
µT

a transforms as

Aµ(x)− → U(x)Aµ(x)U
†(x) +

i

g
U(x)∂µU

†(x)

where U(x) = e−igΓaTa

. Find an expression for the infinitesimal trans-
formations of Aµ, φ, Dµφ and Fµν .

7. Thinking of the nonabelian field strength Fµν as a two-form, show that
tr(F ∧F ) is closed and can be written tr(F ∧F ) = d tr(A∧ dA+ 2

3
A∧

A ∧ A) locally.

8. Explicit calculations in nonabelian gauge theory and the back-

ground field method

1. Derive expressions for the gauge field propagator in the guage nµAµ,
where nµ is a constant vector of length one.

2. Comput the beta function for the gauge coupling in Yang-Mills the-
ory with several Dirac fermions in the representation Ri, and several
complex scalars in the representation R′

j.

3. Compute the one-loop contributions to the anomalous dimensions of
m, ψ and Aµ.

4. Compute the tree-level vertex factors in background field gauge for all
vertices that connect one or more external gluons with two or more
internal lines (ghost or gluon).

9. Global and local symmetries, gauge invariance, gauge fixing,

ghosts, BRST

1. Show that the Faddeev-Popov determinant

∆[A] = det

(

δGa

δθb

)

where Ga is the gauge fixing function, is gauge invariant.
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2. Derive Ward identities for scalar electrodynamics in the Feynman gauge.

3. Derive Ward identities for QED in the axial gauge.

10. Anomalies

1. Consider a theory with a nonabelian gauge symmetry, and also a U(1)
gauge symmetry. The theory contains left-handed Weyl fields in the
representations (Ri, Qi), where Ri is the representation of the non-
abelian group, and Qi is the U(1) charge. Find the conditions for this
theory to be anomaly free.

2. Define the fermionic path integral measure Dψ carefully by going to
Euclidean space. Calculate the Jacobian upon a chiral transformation
and derive the anomaly.

11. Non perturbative effects

1.

12. Exam problems

1. In four dimension, calculate the contribution to the Yang-Mills kinetic
term from a non self interacting complex scalar field coupled to a non-
abelian external gauge field.
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