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introduction

e mutual collisions between asteroids affect their size

distribution, spins and surface morphology

e asteroid families formed mostly by catastrophic collisions

e catastrophic disruption threshold — the largest fragment is half
the original asteroid mass

e subcatastrophic collisions — form an impact crater on the

surface of an asteroid (even though the crater may be huge)
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introduction

e subcatastrophic collisions are thought not to play very

important role — we investigate this more thoroughly

e they act upon asteroids almost permanently (power-law
distribution of projectile sizes with an exponent

p < —2) — cumulative effects may be important

e motivation — the origin of tumbling asteroids (freely precessing

or in non-principal axis rotation state)

e subcatastrophic collisions may be responsible for excitation of
asteroid rotations (Henych & Pravec 2013)



sample

flux

flux

lightcurves

lightcurves for increasing beta or AM ratio

T T T as
42deg P th | [155deg o, i
L £ % N LN

> * Y YL PR AR
b J $ 1 o e, BTSN 73
S $ bx 4 e ped ‘&j
f 4 IR R o, ’4,’. ,:3" 9
3 E _f:’..ﬁf’{l '*z;-‘ ”.5{“ ]
4 [k 23 o‘o“‘
- teity B85 _
4L ¥4 »e _
1 1 1 1
T T T AI
- 134.3 degm“ ,f |
G I S . F.
v b PEN i ]
T I AR WY K
AV N R R
1M z £ i
1L % < b |
] % 1 1 1
0 02 04 06 08 0 02 04 06 038
rot. phase rot. phase



99942 Apophis lightcurve
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tumblers
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slowly rotating asteroids (Pravec et al. 2014)



subcatastrophic collision model

a projectile collides with a target asteroid (triaxial ellipsoid rotating

in a basic state) forming an impact crater on its surface

crater dimensions are calculated acc. to scaling laws
(Holsapple 1993, 2003)

linear and angular momentum (AM) exchange occurs between the

two bodies during the collision

part of the momentum and AM carried away by ejecta (AM transfer
efficiency acc. to Yanagisawa et al. 1996 and Yanagisawa &
Hasegawa 2000)

we calculate the inertia tensor of the target asteroid and then its

lightcurve

we compare the specific impact energy to the catastrophic collision

threshold energy



excitation of rotation
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main questions of the present research

() how probable is to observe tumbling asteroid with rotation
excited by collisions?

() are collisions able to explain observed characteristics of
tumblers?

() are collisions alone sufficient to explain tumbling?



how to do it?

e target asteroid subject to consecutive collisions by a

population of projectiles
e larger projectiles may excite its rotation
e its rotation gradually damps to a basic state
e we observe it at random time (including observation biases)

e finally build a synthetic population and compare it

qualitatively with observed sample of slow rotators



model

input characteristics

targets and projectiles sizes — power-law incremental
distribution (Bottke et al. 2005)

targets sizes 0.4-18 km

isotropic geometry of collisions — orbit inclinations span some

35° and rotational axes may be randomly oriented

impact speed of 5 km/s (median encounter speed in the inner
Main Asteroid Belt)

random initial spin of targets based on observed spins of small
asteroids



model input characteristics
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MBAs/MCs, D=3-15 km, median 62 km
(BinAstPhotSurvey, 2014-04-20)

Spin Rate (d-1)
initial spins of targets according to Pravec et al. (2008), updated
2014-04-20



model features — erosion

e increasing elongation of nonspherical asteroids caused by
consecutive collisions (basically erosion)

e explanation: craters erode all dimensions of the ellipsoidal
target by the same amount on the average, smaller dimensions
decrease relatively quicker than larger, hence axial ratio is
growing (Harris 1990)

e estimated timescale: much longer than collisional lifetime

(catastrophic disruption occurs)

e not very important effect



model features — erosion
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model features — rotation changes

e 1-km target asteroid changes of rotation, several hundred runs

with random initial conditions

e larger projectiles (decimeters to meters only) — incresing spin

rate on the average, observable excitation of rotation

e smaller projectiles (milimeters or centimeters to

meters) — decreasing spin rate in about 60% of runs

e consistent with Harris (1979) theoretical model



model features — rotation changes
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model features — rotation changes

postcol AM / initial AM
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model features — rotation changes

1-mm to 1-m projectiles, 1.4-km target
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problems & further work

e include damping of the excited rotation — three models
(Breiter et al. 2012, Sharma et al. 2005, Efroimsky 2001)

e unknown quality factor for asteroids (damping)

e approximation of collisions with small projectiles

(computationally expensive)
e calculate collision probabilities
e run simulations to build a synthetic population of asteroids

e simulate photometric observation biases
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