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Let V ⊆ [0, 1] be some set of truth values which contains 0 and 1.
A propositional Gödel valuation I0 (short valuation) based on V is
a function from the set of propositional variables into V with
I0(⊥) = 0. This valuation can be extended to a function mapping
formulas from Frm(L 0) into V as follows:

I0(A ∧ B) = min{I0(A), I0(B)},
I0(A ∨ B) = max{I0(A), I0(B)},

I0(4A) =

{
1 I0(A) = 1,

0 I0(A) < 1,

I0(A→ B) =

{
I0(B) if I0(A) > I0(B),

1 if I0(A) ≤ I0(B).



A formula is called valid with respect to V if it is mapped to 1 for
all valuations based on V. The set of all formulas which are valid
with respect to V will be called the propositional Gödel logic based
on V and will be denoted by G0

V .
The validity of a formula A with respect to V will be denoted by

|=0
V A or |=G0

V
A.

Let ¬A be A→ ⊥ and A ≺ B be (B → A)→ B.

I0(¬A) =

{
0 if I0(A) > 0,

1 otherwise,

I0(A ≺ B) =

{
1 if I0(A) < I0(B) or I0(A) = I0(B) = 1,

I(B) otherwise.



We assume closed V and countable Γ. If Γ is a set of formulas
(possibly infinite), we say that Γ entails A in GV , Γ |=V A iff for all
I into V, I(Γ) ≤ I(A).
Γ 1-entails A in GV , Γ→V A, iff, for all I into V, whenever
I(B) = 1 for all B ∈ Γ, then I(A) = 1.

Proposition

Π |=V A iff Π→V A.



Examples

|= (A→ B) ∨ (B → A)

|= (A→ B) ∨ ((A→ B)→ A)

|= ¬A ∨ ¬¬A

|= A→ B ∨ B → C ∨ C → D



Let GV = {A : |=GV
A} be the propositional Gödel logic for V .

Proposition

(i) GV = GV ′ iff |V | = |V ′| or both V , V ′ are infinite
(ii) GV ( GV ′ iff |V | < |V ′|
(iii)

⋂
|V |finite GV = G[0,1]

(iv) Assume A contains n variables, then

Gn+2 |= A⇒ for all V : GV |= A

Proof
i, iii, iv are obvious
ad ii. GV ⊆ GV ′ is obvious, and GV |= A|V |, but GV ′ 2 A|V | for

A|V | = p1 ∨ p1 → p2 ∨ . . . ∨ p|V | → >



Gödel Conditional

Suppose we have a standard language containing a ‘conditional’ �
interpreted by a truth-function into [0, 1], and some entailment
relation |=. Suppose further that

a conditional evaluates to 1 if the truth value of the
antecedent is less or equal to the truth value of the
consequent, i.e., if I(A) ≤ I(B), then I(A � B) = 1;

if Γ |= B, then I(Γ) ≤ I(B);

the deduction theorem holds, i.e.,
Γ ∪ {A} |= B ⇔ Γ |= A � B.

Then � is the Gödel conditional.



Proof

From (1), we have that I(A � B) = 1 if I(A) ≤ I(B). Since |= is
reflexive, B |= B. Since it is monotonic, B,A |= B. By the
deduction theorem, B |= A � B. By (2),

I(B) ≤ I(A � B).

From A � B |= A � B and the deduction theorem, we get
A � B,A |= B. By (2),

min{I(A � B), I(A)} ≤ I(B).

Thus, if I(A) > I(B), I(A � B) ≤ I(B).



Theorem
(i) |=V is compact iff V is uncountable
(ii) There are uncountably many different {< Γ,A >: Γ |=V A}

Example: V = { 1n : n ∈ N} ∪ {0} does not admit a compact
entailment
Let Γ = {x1 < x2, x2 < x3, . . .} ∪ {x1 > z , x2 > z , . . .}
Γ |=V z but Γ′ 2 z for all finite subsets Γ′ ⊂ Γ.



Axioms and deduction systems for Gödel logics

We will denote by IL the following complete axiom system for
intuitionistic logic.

I1 ⊥ → A I8 (A→ B)→ [(C → A)→ (C → B)]

I2 A→ (B → A) I9 [A→ (C → B)]→ [C → (A→ B)]

I3 (A ∧ B)→ A I10 (A→ C ) ∧ (B → C )→ ((A ∨ B)→ C )

I4 (A ∧ B)→ B I11 (C → A) ∧ (C → B)→ (C → (A ∧ B))

I5 A→ (B → (A ∧ B)) I12 (A→ (B → C ))→ (A ∧ B → C )

I6 A→ (A ∨ B) I13 [A→ (A→ B)]→ (A→ B)

I7 B → (A ∨ B)

MP A A→ B
B



Theorem
G[0,1] is axiomatized by IL + (A→ B ∨ B → A)

Proof
A chain on X1, . . . , xn is an expression

(⊥ on0 xπ(1)) ∧ (xπ(1) on1 xπ(2)) ∧ . . . ∧ (xπ(n) onn >)

where π is a permutation and oni ∈ {≺,→}.∨
Cchain

on {x1,...,xn}
C is valid (use that all Gödel logics prove

|=[0,1] u ≺ v ∨ u ↔ v ∨ v ≺ u).



Proof cont.
Let F(x1, . . . , xn) be the set of formulas in x1, . . . , xn,
ψC : F(x1, . . . , xn) 7→ {x1, . . . , xn,>,⊥} the formal evaluation of a
formula under C , then

C ∧ A↔ C ∧ ψc (A)

A formula is valid iff ψC (A) = 1 for all C .

∨
C ↔

∨
C∧> ↔

∨
(C∧ψC (A))↔

∨
(C∧A)↔ (

∨
C )∧A↔ A

Corollary

Strong completeness for uncountable V follows from compactness.

Corollary

G|V | with |V | = n is axiomatize by

G[0,1] +> → A1 ∨ A1 → A2 ∨ . . . ∨ An−1 → ⊥



Gödel logics with 4

v(4A) =

{
1 if v(A) = 1

0 if v(A) 6= 1

Theorem
G[0,1] extended by 4 is axiomatized by G[0,1] and

∆1 4A ∨4A

∆2 4(A ∨ B)→ (4A ∨4B)

∆3 4A→ A

∆4 4A→44A

∆5 4(A→ B)→ (4A→4B)

∆6
A
4A



First order Gödel Logics

Definition
A Gödel set is a closed set V ⊆ [0, 1] which contains 0 and 1.
Let V be a Gödel set. An interpretation I into V , or a
V-interpretation, consists of

a nonempty set U = UI , the ‘universe’ of I,

for each k-ary predicate symbol P, a function PI : Uk → V,

for each k-ary function symbol f , a function f I : Uk → U,

for each variable v , a value vI ∈ U.



Given an interpretation I, we can naturally define a value tI for
any term t and a truth value I(A) for any formula A of L U . For a
term t = f (u1, . . . , uk ) we define I(t) = f I(uI1 , . . . , u

I
k ). For

atomic formulas A ≡ P(t1, . . . , tn), we define
I(A) = PI(tI1 , . . . , t

I
n ). For composite formulas A we extend the

truth definitions from the propositional case for the new syntactic
elements by:

I(∀x A(x)) = inf{I(A(u)) : u ∈ U}
I(∃x A(x)) = sup{I(A(u)) : u ∈ U}.

If I(A) = 1, we say that I satisfies A, and write I |= A. If
I(A) = 1 for every V-interpretation I, we say A is valid in GV and
write GV |= A.



VR = [0, 1] V0 = {0} ∪ [1/2, 1]

V↓ = {1/k | k ≥ 1} ∪ {0}
V↑ = {1− 1/k | k ≥ 1} ∪ {1}
Vn = {1− 1/k | 1 ≤ k ≤ m − 1} ∪ {1}

The corresponding Gödel logics are G[0,1], G0, G↓, G↑, and Gn.
G[0,1] is the standard Gödel logic.

Theorem

G↑ =
⋂

V :|V | is finite

GV

G[0,1] =
⋂

all V

GV



Gn ) Gn+1,

Gn ) G↑ ) GR,

Gn ) G↓ ) GR,

G0 ) GR.

Gn )
⋂

n Gn = G↑ ) G↓ ) G[0,1] =
⋂

V GV .



Intuitionistic First Order Logic IL1 extends IL by

A→ B(a)

A→ ∀xB(x)
∀xB(x)→ B(t)

A(a)→ B

∃xA(x)→ B
A(t)→ ∃xA(x)

(a does not occur in the lower sequent)



Axiomatizability results

Axiomatizable case 1: 0 is contained in the perfect kernel

GV is axiomatized by

IL + A→ B ∨ B → A + ∀x(A ∨ B(x))→ A ∨ ∀xB(x)

Remark: GV = GV ′ iff V , V ′ are uncountable and 0 is in the
perfect kernel of each of them.



Axiomatizable case 2: 0 is isolated
GV is axiomatized by

G[0,1] + ∀ȳ(¬∀xA(x , ȳ)→ ∃x¬A(x , ȳ))

Remark: GV = GV ′ if both are uncountable with 0 isolated.

Axiomatizable case 3: Finite Gödel sets
GV with |V | = n is axiomatized by

G[0,1] + > → A1 ∨ A1 → A2 ∨ . . . ∨ An−1 → ⊥



Not recursively enumerable case 1: Countable Gödel sets

Let Ag ≡{
S ∧ c1 ∈ 0 ∧ c2 ∈ 0 ∧ c2 ≺ c1 ∧
∀i
[
∀x , y∀j∀k∃z D ∨ ∀x¬(x ∈ s(i))

] }→ (A′ ∨ ∃u P(u))

where S is the conjunction of the standard axioms for 0, successor
and ≤, with double negations in front of atomic formulas,

D ≡ (j ≤ i ∧ x ∈ j ∧ k ≤ i ∧ y ∈ k ∧ x ≺ y)→
→ (z ∈ s(i) ∧ x ≺ z ∧ z ≺ y)



Not recursively enumerable case 2: 0 not isolated but not in
the perfect kernel

Let Ah ≡
S ∧ ∀n((Q(n)→ Q(s(n)))→ Q(n)) ∧
¬∀n Q(n) ∧ ∀n¬¬Q(n) ∧
∀n∀x((Q(n)→ P(x , n))→ Q(n)) ∧
∀n∃x∃y(x ∈n 0 ∧ y ∈n 0 ∧ x ≺n y) ∧
∀n∀i

[
∀x , y∀j∀k∃z E ∨ ∀x¬(x ∈n s(i))

]

→ (A′∨∃n∃u P(u, n)∨∃n Q(n))

where S is the conjunction of the standard axioms for 0, successor
and ≤, with double negations in front of atomic formulas,

E ≡ (j ≤ i ∧ x ∈n j ∧ k ≤ i ∧ y ∈n k ∧ x ≺n y)→
→ (z ∈n s(i) ∧ x ≺n z ∧ z ≺n y)

and A′ is A where every atomic formula is replaced by its double
negation, and all quantifiers are relativized to the predicate
R(n) ≡ ∀i∃x(x ∈n i).



Relation to Kripke frames

Theorem
For every countable linear Kripke frame K there is a Gödel set VK

such that L(K ) = GVK
.



Theorem
The set of infinitely-valued propositional Gödel logics is singleton.
The set of infinitely-valued first-order Gödel logics is countable.
The set of infinitely-valued propositional and first-order
entailments is uncountable.
The set of infinitely-valued propositional Gödel logics with
propositional quantifiers is uncountable.

Theorem
For every n there is exactly one n-valued propositional logic,
n-valued propositional logic with quantifiers, n-valued first-order
logic, n-valued first-order logic with entailment.



Gödel, Kripke frames and Intuitionistic Logic

Gödel (1933)

Wanted to show that Intuitionistic Logic does not have a finite
matrix, i.e., is not a finitely valued logic.

Kripke (60ies)

Semantic for Intuitionistic Logic based on trees.
Axiom (A→ B) ∨ (B → A) of Gödel logics implies linearity on
Kripke frames.



Relating Gödel logics and logic on Kripke frames

‘Truth values in Kripke frames’

Sets of worlds in which a formula is true, is upward closed.
The set of upwards closed sets in K , Up(K ), is a Gödel algebra.
A (order theoretic) upper limit point w generates two distinct
upward closed sets:

w↑ = {v ∈ K : R(w , v)}
w↑∗ = w↑ \ {w}



The logic L(Q) cont.

An embedding of Q′ into [0, 1] preserving the order, infima and
suprema will generate a set which is isomorph to the border points
of the Cantor middle third set. The closure of this set is the
Cantor middle third set.

Thus, L(Q) = GC[0,1]
= G[0,1]



The logic L(Q) cont.

An embedding of Q′ into [0, 1] preserving the order, infima and
suprema will generate a set which is isomorph to the border points
of the Cantor middle third set. The closure of this set is the
Cantor middle third set.

Thus, L(Q) = GC[0,1]
= G[0,1]



Equivalence result

Gödel logic to Kripke frame

For each Gödel logic there is a countable linear Kripke frame such
that the respective logics coincide.

Kripke frames to Gödel logic

For each countable linear Kripke frame there is a Gödel truth value
set such that the respective logics coincide.



Definition (sequent)
A sequent is

Γ ` ∆

where Γ,∆ are multisets of formulas and |∆| ≤ 1.



Sequent calculus LJ - structural rules

Axiom
A ` A

weakening
Γ ` ∆ wl

A1, Γ ` ∆
Γ ` wr

Γ ` A

contraction
A1,A1, Γ ` ∆

cl
A1, Γ ` ∆

cut

Γ ` A A,Π ` ∆
cut(A)

Γ,Π ` ∆

|∆| ≤ 1



Sequent calculus LJ - logical rules

and ∧
A1, Γ ` ∆ ∧l1A1 ∧ A2, Γ ` ∆

A2, Γ ` ∆ ∧l2A1 ∧ A2, Γ ` ∆
Γ ` A Γ ` B ∧r

Γ ` A ∧ B

or ∨
A1, Γ ` ∆ A2, Γ ` ∆ ∨l

A1 ∨ A2, Γ ` ∆

Γ ` A1 ∨r1Γ ` A1 ∨ A2

Γ ` A2 ∨r2Γ ` A1 ∨ A2

not ¬
Γ ` A ¬l¬A, Γ `

A, Γ ` ¬r
Γ ` ¬A

implication →
Γ ` A1 A2, Γ ` ∆ →l

A1 → A2, Γ ` ∆

A1, Γ ` A2 →r
Γ ` A1 → A2

|∆| ≤ 1



Sequent calculus LJ - logical rules

for all ∀
A{x ← t}, Γ ` ∆

∀l
(∀x)A(x), Γ ` ∆

Γ ` A{x ← α}
∀r

Γ ` (∀x)A(x)
t term, does not contain any variables which are bound in A and α
is a free variable which may not occur in Γ,∆,A. α is called an
eigenvariable.

there exists ∃
A{x ← α}, Γ ` ∆

∃l
(∃x)A(x), Γ ` ∆

Γ ` A{x ← t}
∃r

Γ ` (∃x)A(x)
The variable conditions for ∃l are the same as those for ∀r and
similarly for ∃r and ∀l .

|∆| ≤ 1



Definition (hypersequent)

A hypersequent is a multiset

Γ1 ` A1 | . . . | Γn ` An

where for every i = 1, . . . , n, Γi ` Ai is a sequent, called
component of the hypersequent.



Axioms Cut Rule
A ` A ⊥ `

A is atomic

G | Γ′ ` A G ′ | A, Γ ` C

G | G ′ | Γ, Γ′ ` C
(cut)

External Structural Rules
G

G | Γ ` A
(ew)

Internal Structural Rules
G | Γ ` C

G | Γ,A ` C
(w , l)

G | Γ `
G | Γ ` C

(w , r)

G | Γ, Γ′ ` A G ′ | Γ1, Γ
′
1 ` A′

G | G ′ | Γ, Γ′
1 ` A | Γ′, Γ1 ` A′ (com)



Logical Rules
G | S

G | S ′′
G | S G | S ′

G | S ′′

for S ,S ′, S ′′ as in the logical rules for LJ.

Theorem
If d ` H, one can find a cut-free proof d ′ ` H with |d ′| ≤ 4

|d |
ρ(d).



Corollary (Midhypersequent theorem)

For every valid hypersequent of prenex formulas there exists a
hypersequent (the midhypersequent) such that all inferences in the
proof above are propositional or structural and all inferences below
are quantificational or structural.

Corollary

The prenex fragment of G[0,1] admits Skolemization.



A ` A B ` B
A ` B | B ` A

A ` B | ` B → A

` A→ B | ` B → A

` A→ B ∨ B → A | ` B → A

` A→ B ∨ B → A | ` A→ B ∨ B → A

` A→ B ∨ B → A



A ` A

B(a) ` B(a) A ` A

B(a) ` A | A ` B(a)

A ∨ B(a) ` A | A ` B(a) B(a) ` B(a)

A ∨ B(a) ` A | A ∨ B(a) ` B(a)

∀x(A ∨ B(x)) ` A | A ∨ B(a) ` B(a)

∀x(A ∨ B(x)) ` A | ∀x(A ∨ B(x)) ` B(a)

∀x(A ∨ B(x)) ` A | ∀x(A ∨ B(x)) ` ∀xB(x)

∀x(A ∨ B(x)) ` A ∨ ∀xB(x) | ∀x(A ∨ B(x)) ` ∀xB(x)

∀x(A ∨ B(x)) ` A ∨ ∀xB(x) | ∀x(A ∨ B(x)) ` A ∨ ∀xB(x)

∀x(A ∨ B(x)) ` A ∨ ∀xB(x)

` ∀x(A ∨ B(x))→ A ∨ ∀xB(x)
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Journal of Logic and Computation, 13(6):835–861, 2003.



Bibliography (cont)

Matthias Baaz, Agata Ciabattoni, and Christian G. Fermüller.
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