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® Define concepts related to that of informal provability as
individuated by S4 modal operators

® Employ the concepts both from a formal (embeddings in S4) and an
informal (BHK-like interpretation) point of view

® Define logics out of such characterisations

® Define a BHK-like interpretation for classical logic validities and
their embedding in S4

® Employ our intuitions in a natural deduction calculus
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Informal (“Absolute”) Provability

Gédel (1933), Myhill (1960), Leitgeb (2009)

S4 Modal logic:

A
® Necessitation rule: —
OA

® K axiom: O(A — B) —» (DA — 0OB)
® T axiom: JA — A
® 4 axiom: A — OOA

Intuitive reading of LJA: A, that is, there is a proof of A.

What about other operators ¢, =1, =7

3/31



Embeddings

Fitting (1970): O{-translation for classical theorems in S4:

4/31
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Fitting (1970): O{-translation for classical theorems in S4:

L Lo
PO = OoP
(A = DO?ADO
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Embeddings

Fitting (1970): O{-translation for classical theorems in S4:

L Lo
PO = OoP

(AP = DO?ADO
(AAB)FO = OO(A7C A BHO)
(Av B)FC = O0(AP° v BHO)
(A— B)P = 0O0(AY° — B79)

(VxA)FO = OOvx ADC

(AxA)FC = OO3x AHO

* Weakly faithful: Fss AFC iff ¢ A

® { interpreted as informal Consistency
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Square of opposition for informal provability

e /fJA, then A, that is, there ® if-=QA, then - —A, that is,
is a proof of A. there is a proof of —A.

e ifOA, then ¥ —A, that is, e jf—[JA, then ¥ A, that is,
there is no proof of —A. there is no proof of A.
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Square of opposition for informal provability

e /fJA, then A, that is, there ® if-=QA, then - —A, that is,

is a proof of A. there is a proof of —A.
® fOA, then ¥ —A, that is, e jf—[JA, then ¥ A, that is,
there is no proof of —A. there is no proof of A.
contrary
ProvVABILITY REFUTABILITY
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BHK interpretations

® |s it possible to characterise a logic for every point of the square?

® |s it possible to give a BHK interpretation for each one of them?

Example:
BHK, elements:

® (Successful) constructions
® Provability
® Logical constant clauses

® Species
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Employing the concepts

Characterising the logic of Provability:

e BHK| interpr. ® [J-translation

® the construction ¢ proves A A B iff ¢ is of the form (c’,c"") and ¢’ proves A and
c’’ proves B.

® the construction c proves AV B iff c is of the form (i,c’) with i either 0 or 1,
such that fori =0 then ¢’ proves A and fori =1 then ¢’ proves B.

® the construction c proves A — B iff c is a general method of construction such
that applied to a hypothetical construct ¢’ that proves A, c(c’) proves B.

® the construction c proves —A iff c is a general method of construction such that
applied to a hypothetical construct ¢’ that proves A, c(c’) proves L.

® the construction c proves VYx A iff c is a general method of construction such that
given any individual a from the species under consideration, c(a) proves A(a/x).

® the construction c proves 3x A iff c is of the form {(a,c’), where a is an individual
such that ¢’ proves A(a/x).

® no construction c proves .

® every construction ¢ proves T.
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Employing the concepts

Characterising the logic of Provability:

e BHK, interpr.

(—A)-
(AA B)Y
(Av B)Y
(A— B)Y

(VxA)P

(Ix AP

® [J-translation

Lo

aoP
0-A-
O(AP A BY)
O(AY v BY)
O(A" — BY)
Ovx AH
O3xAH
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System LJ

pp L L = r= w
= - = A=W r=A
A AT =V r=A AN=V
2 Cut
AT=w rnLn=wv
AT=V B r=w r=A F:>BR
——F——— RA
AAB T =W AAB T =W r=AAB
AT=>v B, =WV r=A r=~8 R
T —— RV
AVB,T =V r—AvB ' T=AvB °
r=A B, I=wv NA=B
- @ —
A—=B T =V r==A—B
=>4 | AT=
F7—|A¢\U = -A B
A(a/x), T =¥ M= A(a/x A(a/x), T =W r= A(a/x
(/)RV* L3* ¢R3
VxA, T = W = VxA IxA, T =V = dxA
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General method for proving embeddings

MO sy AT GfFT 1 A
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General method for proving embeddings

Mg AH iffTH A
<: Show that every rule of LJ is derivable in LKS4 modulo C-translation.

=>: Show that every LKS4 derivation of a [I-translated sequent is equivalent to
a single-conclusion derivation, given cut-elimination and subformula property.
Therefore, the only [-translated provable sequents are single-conclusion ones.
Only non-trivial case regards rule RC.

As a corollary, this entails ro Fisa AD T H A
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System LKS4

P=P 1= =T

AAT=A
L

r=A

r=A

A=A

Fr=A,A A

r=~A A

RW

r=A A

AN= A

Cut

AT =A

AT=A

r=An,A

B,T=A

rMn=A A

Fr=A, A

r=A,B

LA1
AAB T = A

AT=A BT=A

Lv

LA
AANB T = A

r=A A

RA

r=A,AAB

r=A,B

AVB, T=A
A=A B
—_— L
r= A A= B

r=A,A

r=A,A

RV
r=A AVB

B,T=A

A= B T =A

AT=A

L
r,-A= A

rA=A Or = oA, A
Lo

r=A, A

ar, A= OA

RV,

r=A, AVB

L—

r=A,A

r,OA= A

Al(a/x), T = A M= A, A(a/x)

R
Or = oA, OA

LO
Or, 0A = OA

A(a/x), T = A

VxA, T = A = A, VxA

IxA, T = A

RO
= A, OA

r= A, A(a/x)
M= A, 3xA
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Employing the concepts

Characterising the logic of Refutability:

Propositional

L

p¢
(~A)
(AN B)™©
(Av B)™®
(A<B)™°
(VxA)™©
(IxA)©

® —(-translation

part: Shramko (2016)

Lo

oP
O-A0
O(A™ A B™0)
O(A™C v B™0)
O(A™© < B™9)
OVx A0
OIx A0

In Classical logic, A~ B:= (=BA A), that is, =(B — A).
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System LDJ

pup L T = A o= A RW
= = =
A= A D= A A
dP=A A A b= A A Aﬁ/\c
- ut
D= A A d=A,NA
A=A B= A d=AA b=A B
_— — LAs RA
AANB= A AANB= A b=A AAB
A=A B=A P=A A = A B
RV RV,
AVB= A d=A AVB ®=A, AVB
A= B, A b= A B:sAR
T P72 Ry
B<A= A o= A B<A
= A A A=A
A=A =4, -A
A(a/x) = A b= A, A(a/x) Ry A(a/x) = A = A, A(a/x) .

VxA= A P = A, VXA

IxA= A d = A, IxA
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Employing the concepts

Characterising the logic of Consistency and Unprovability:

(~A)°
(AN B)©
(Av B)¢
(A— B)®

(VxA)©

(IxA)©

e (-translation and —[J-translation

Ln

OP
OA©
O(AY A BY)
O(AY v BY)
O(A® — BY)
OVxA®
OIxAC

L

P—||:|
(-A)
(AAB)™0
(Av B)™J
(A<B)™0
(VxA)~H
(3xA)"H

Lo

OpP
0-A"H
O(A™E A B7D)
OA™" v B7H)
O(A™H < B™0)
OvxA™H
O3xA™,
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System LJ~
Same as LJ, minus L— and R—, plus

AT=Vv =B r=A B=
_ g ——— L« —/———— " R<
B<AT =WV B<A T =V = B<A

System LDJ™

Same as LDJ, minus L< and R, plus

=A0A,A B=A A=A R ¢ =B

L— —1 R—
A= B=A =A—=B A d=A— B 2
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Translations schemes

PO
(—A)-
(AN B)Y
(Av B)Y
(A— B)Y
(VxA)P
(Ix AP

po
(-A)°
(AN B)®
(Av B)®
(A— B)?
(VXA)<>
(EIXA)<>

opP
0-AV
O(A5 A BY)
O(AY v BY)
O(A" — BY)
Ovx AP
O3x AH

OP
OA©
O(A® A BY)
O(A® v BY)
O(A® — BY)
OVx A®
OIxAC

P
(~A)°
(AN B)™©
(Av B)™®
(A<B)™©
(VxA)™©
(IxA)©

P_‘D
(-A)"
(AnB)™D
(Av B)™J
(A<B)™H
(VxA)~F
(IxA)~F

oP
O-A™0
O(A™ A B™)
O(A™ v B™9)
O(A™0 < B™?)
OVx A0
OAxAC

opP
0-A"0
O(A™D A B~D)
OA" v BH)
O(A™H <« B~H)
OvxA™H
O3xA™.
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Square of opposition for informal provability logics

o MU, AU fFTH A o O ey A JffT bp A

o [0 bgy A iffT Fp— A o g, AU iffTH< A
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Square of opposition for informal provability logics

o D gy AR T H A ® [0 gy ACiffT oy A
® [0 tgy AC JffT Fpi— A o MUy AU T < A
| * DI
g
2 $
It

o o5

£ duality S

. =

& :

a 5

9

7
*
=
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F=A) = A =T~

P = P
(A = oA
(ANB* = A*VB*
(AVB* = A*AB*
(A= B = A <B
(A<B* = A*—B*
(VxA = 3Ix(A*

(IxA)* = Vx(A®
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F=A) = A =T~

P~ = P
(-Ar = oA
(ANB* = A*VB*
(AvB* = A*AB*
(A= B = A"<B*r
(A<B* = A" =B
(vxA)* = Ix(A)*
(IxA)* = Vx(A®

Dual-Glivenko theorem for DI7: Fp— A iff ¢ A for A propositional
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F=A) = A =T~

P* = P
(-4 = oA
(ANB* = A*VB*
(AvB* = A*AB*
(A= B = A"<B*r
(A<B* = A =B
(VxA)* = Ix(A)®
(3xA)* = Vx(A®

Dual-Glivenko theorem for DI7: Fp— A iff ¢ A for A propositional
Corollaries:

o sy AYiff THA ® [ Obpss A0 iff T FpiA

® MObpisa— A iff T hp- A o IO« ADiff T H<A.
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Semantic Intuition

For R reflexive and transitive and w, v belong to the set of points of
evaluation

wlk A — B iff Vv wRv then vIk A implies viF B
wlkp A < B iff 3v vRw then viFp; A and not vikp B
WH—D|H A — Biff dv vRw then V”—D|ﬁ\ A implies V“—D|H B

w k< A< B iff Yv wRyv then vIF< A and not viF< B

Increasing domain: | and I

Decreasing domain: DI and DI~
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Characterising the logic of Consistency:

® (-translation e BHKp,— interpr.
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Characterising the logic of Consistency:
® (-translation ® BHKp,— interpr.

® the abstraction a does not refute AN B iff s is of the form (i,a’) with i either 0
or 1, such that fori = 0 then a’ does not refute A and fori =1 then a’ does not
refute B.

® the abstraction a does not refute AV B iff a is of the form (a’,a’’) and a’ does
not refute A and @'’ does not refute B.

® the abstraction a does not refute A — B iff a is a general method of abstraction
such that for an hypothetical abstraction a’ that does not refute A, the abstract
a(a’) does not refute B.

® the abstraction a does not refute —A iff a is a general method of abstraction
such that for an hypothetical abstraction a’ that does not refute A, the abstract
a(a’) does not refute L.

® the abstraction a does not refute Vx A iff a is of the form (a,a’), where a is an
individual such that a’ does not refute A(a/x).

® the abstraction a does not refute Ix A iff a is a general method of abstraction
such that given any individual a from the species under consideration, a(a) does
not refute A(a/x).

® no abstraction does not refute 1.

® every abstraction does not refute T.
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Classical Logic

P = apP po = OP
(_\A)E = D_\Ao (ﬂA)<> = <>—|AE‘
(AAB)® = [O(AY A BY) (AAB)® =  O(A° A BY)
(AvB)E = [OA®vBY) (AVB)® = O(A%VBY)
(A= BY = [OA? - BY) (A= B¢ = O(AY — B)
(Vx AP = Ovx A® (VxA)® = OVxA®
EAE = O3AD (AxA)® = 0IxA®
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Classical Logic

P = apP po = OP
(_\A)E = D_\Ao (ﬂA)<> = <>—|AE‘
(AAB)® = [O(AY A BY) (AAB)® =  O(A° A BY)
(AvB)E = [OA®vBY) (AVB)® = O(A%VBY)
(A= BY = [OA? - BY) (A= B¢ = O(AY — B)
(Vx AP = Ovx A® (VxA)® = OVxA®
EAE = O3AD (AxA)® = 0IxA®

MO gy A® iffT Fc A.
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Classical logic

BHK| + BHKp|—, except for implication and negation, plus:
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Classical logic

BHK| + BHKp|—, except for implication and negation, plus:

® the construction ¢ proves A — B iff ¢ is a general method of construction such
that applied to a hypothetical abstraction a that that does not refute A, c(a)
proves B.

® the construction ¢ proves —A iff ¢ is a general method of construction such that
applied to a hypothetical abstraction a that that does not refute A, c(a) proves
1.

® the abstraction a does not refute A — B iff a is a general method of abstraction
such that for c that proves A, the abstract a(c) does not refute B.

® the abstraction a does not refute —A iff a is a general method of abstraction
such that for c that proves A, the abstract a(c) does not refute L.
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Relations with Natural deduction calculi

There is a quite clear correspondence between BHK| and natural
deduction for |, that is, NJ. There is also one for BHKp,— which leads to
a calculus NDJ™ (Tranchini, 2012) “dual” to NJ in the same way in
which LJ is dual to LDJ ™.

There is a way of combining the two structures in order to get Classical
logic which looks very different from the standard natural deduction
calculi for C, that is, NK, but seem to be in a natural correspondence
with a (single-conclusion) sequent calculus for classical logic.
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System NKM

C
IA
ANB C C AAB
: : Eng
P D A
A (B
— V2
AVE B AV B
T
|—)1
A>B A B ALB
: —
:D A— B 2 B
(B)
C
VxA C v A
x VL EV A(a)
D A(a) IXA

A C
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Proof of =A — A k¢ A:

N
-A— A —-A A
_>—
A

|—>1
E
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Proof of -A — Atc A:

_ T
-A— A —-A A
E—» — i —
A

|—>1

Proof of F¢ ==Vx (A(x) V —A(X)):

-
l—1
—=Vx (A(x) V —A(X)) €L N
T |—1
(=Vx =A(x))) L 1
i l—1
I T (Vx X))
—|A(X) A X)
Iv v
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System LKS

FP PR
. D! =T
r-c rrc
MC
r-c
r=¢ r= 1 AAT=C r=A Al=cC
=0 Exp Cut
MA=C r=A AT=C rLn=c
AT=C B,I=C r=A r=8
Ao RA
AAB T = C AANB T =C Fr=AAnB
AT=C B, T=C r=A =18 R
T —— RV
AVB, = C r=AvB ' T=AvVB
r=A B, I=C NA=B
L ——— R—
A—-BT=C r=A—+-B

Aa/x), T = C
2T T Ty
VxA, T = C

I = A(a/x) e
T=VxA

A(a/x), T = C
AT

IxA, = C = 3xA
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Thank you!

lrslei@gmail.com
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Employing the concepts

Characterising the logic of Refutability:
e —{-translation e BHKp interpr.

® the abstraction a refutes A A B iff a is of the form (i,a’) with i either 0 or 1,
such that fori = 0 then a’ refutes A and fori =1 then a’ refutes B.

® the abstraction a refutes AV B iff a is of the form (a’,a’”’) and a’ refutes A and
a’ refutes B.

® the abstraction a refutes A < B iff a is a general method of abstraction such that
for a’ refuting A, the hypothetical abstract a(a’) refutes B.

® the abstraction a refutes —A iff a is a general method of abstraction such that
for @’ refuting A, the hypothetical abstract a(a’) refutes T.

® the abstraction a refutes Vx A iff a is of the form (a,a’), where a is an individual
such that a’ refutes A(a/x).

® the abstraction a refutes Ix A iff a is a general method of abstraction such that
given any individual a from the species under consideration, a(a) refutes A(a/x).

® every abstraction refutes | .

® no abstraction refutes T.
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Employing the concepts

Characterising the logic of Unprovability:

BHK|~ interpr. e [O-translation e G3I~

the construction ¢ does not prove A A B iff ¢ is of the form (c/,c") and ¢’ does
not prove A and c’’ does not prove B.

the construction ¢ does not prove AV B iff ¢ is of the form (i,c’) with i either 0
or 1, such that fori = 0 then ¢’ does not prove A and fori =1 then ¢’ does not
prove B.

the construction ¢ does not prove A < B iff c is a general method of construction
such that applied to a hypothetical construct ¢’ that does not prove A, c(c’)
does not prove B.

the construction ¢ does not prove —A iff c is a general method of construction
such that applied to a hypothetical construct ¢’ that does not prove A, c(c’)
does not prove T.

the construction ¢ does not prove Vx A iff ¢ is a general method of construction
such that given any individual a from the species under consideration, c(a) does
not prove A(a/x).

the construction ¢ does not prove 3x A iff ¢ is of the form (a,c’), where a is an
individual such that ¢’ does not prove A(a/x).

every construction ¢ does not prove L.

no construction ¢ does not prove T.
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A refined Square of opposition?

e KF axiom: =—Vx(A(x) V —A(x))
e DKF axiom: —=3x(A(x) A —A(x))

I * D

duality

7\

DI 4+ DKF »— % ——=< I* 4+ KF

theorems
swaJoaylilue
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