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Cantor’s infinite numbers




Cantor's finite numbers
Laws for finite numbers

(N7 =+, 07 17 <)

X+y=y+x xy=yx
x<y=x+z<y-+z
x<y0<z=xz<yz



Flaws of Cantor's arithmetic of inifnite numbers

l4+w#w+l, 2 w#w-2

—|(2<3:>2+N0<3+N0), —|(2<3:>2~N0<3'N0)



K. Gédel, What is Cantor’s continuum problem? 1947

Godel presents Cantor’s cardinal numbers as extending the system
of natural numbers, (N, +,-,0,1,<), and seeks to show that “this
extension can be effected in a uniquely determined manner".

To this end, Gédel discusses (1) definition of cardinal numbers, (2)
their equality, (3) total order, (4) operations of sum and product.



(Godel, 1947)

(Ad 1) Godel claims that “Cantor’s definition of infinite numbers
really has this character of uniqueness", since “whatever ‘number’
as applied to infinite sets may mean" it has to be based on the
one-to-one correspondence.

(Ad 2, 3) Gddel claims that “there is hardly any choice left but to
accept Cantor’s definition of equality between numbers, which can
easily be extended to a definition of ‘greater’ and ’less’ for infinite
numbers".

(Ad 4) As for the sum and product of ordinal numbers, Godel writes:
“it becomes possible to extend (again without any arbitrariness) the
arithmetical operations to infinite numbers (including sums and prod-
ucts with any infinite number of terms or factors) and to prove prac-
tically all ordinary rules of computation".



Alternatives to Cantor’s theory of infinite numbers

— Hessenberg's normal sums and products; (Ord, +,, 5,0, 1, <)
— Conway numbers; ONAG
— Benci and Di Nasso's numerosities (and Euclidean numbers)



Alternatives to Cantor’s theory of infinite numbers

— Hessenberg's normal sums and products; (Ord, +p,p, 0,1, <)
— Conway numbers; ONAG
— Benci and Di Nasso's numerosities (and Euclidean numbers)

(Ord, +4,n,0,1,<) C ONAG
numerosities C ONAG
Euclidean numbers < ONAG



Alternative 1. Normal sums and products of ordinal numbers
Normal form theorem (Cantor, 1897); o € Ord

a=wm -pi+...+w". pp,

where 1 > ... >np, n; € Ord, h,p; € N



(Hessenberg, 1906)

a=whm -pr+...+w"- pp,

ﬁ:wm-q1+...+w"h-qh
a+npB =g WP (pr+aq)+...+w™ - (pr+ qn)

QB =g Y W g
1<ij<h

a+n/B:B+na7 a‘nB:/B'na
a<B=a+,y<B+ny, a<B=a,,v<pBny

(Orda +na ‘n 07 17 <)



J. Conway (1976, 2001). On Numbers and Games.
The ordered field ONAG

ONAG = {a: ais a surreal number}
(ONAG, +,-,0,1, <)



Alternative 2. The ordered field ONAG

(Ord, +p,n,0,1,<) — (ONAG,+,-,0,1,<)

Ord C ONAG



Some surreal numbers



H. Gonshor (1986). An Introduction to the Theory of
Surreal Numbers.

Df A surreal number is a function a from an ordinal o, a € Ord,
into the set {+, —},
a:a—{+,—-}

a~ (++..)
——
[0






J. Conway, On numbers and Games

ONAG = {a: ais a surreal number}
(ONAG, +,+,0,1,<)

R C R* € ONAG, Ord C ONAG, N*C ONAG

—Ww, w = 17 N ) \/a



Alternative 3. Numerosities

V. Benci, M. Di Nasso (2019). How to Measure the Infinite: Math-
ematics with Infinite and Infinitesimal Numbers. Singapore.
V. Benci, M. Forti,(2017). The Euclidean numbers. arXiv:1702.04163.



What are numerosities?

(N7+a'7071><) (R)+a'70717<)
N*:NN/L{ R*:RN/L{
(N*7+a'70’17<) (R*,+a'3071,<)

(n=(s)e{jeN:n=s}tecl

()] +7 ()] = [(ri + )], ()]~ [(s)] = [(15 - 57)]

(D<) ={ieN:n<steld



Standard numbers in nonstandard framework

=[(r,r,r,...)]
[(2,2,2,...)] = [(0,0,2,2,2,2...)]

If the sequence (n;) representing a hypereal number is such that
{jeN:in=2}={jeN:n <j} =N\{1,2,...,n0},

then [(n;)] = 2.



Number «

a=1[(1,2,3,.)] = [(n)]

o? =1(1,2,3,..)] - [(1,2,3,...)] = [(1},22,32,..)] = [(n?)].



How to assign numerosity to subset of N

Let A be a subset of N. We define a function v4 : N+— N, by

va(n)={a€ A|a<n} (1)

The numerosity of the set A is the nonstandard natural number v/, (A)
represented by the sequence (pa(n)), that is

va(A) = [(pa(n))]
= [(QDA(]-),(,DA(z),SOA(g),--~)]-



Some examples

1) Let us start with finite sets, e.g. a two elements set A = {k,/},
with kK < [. We have,

0, for n < k,
pa(n) =< 1, for k < n< |,
2, for I < n.

[(pa(n))] = [(000011111111111122222222...)] = 2
Vo(A) =2
2) When A = {a1, ..., ax}, va(A) = k.



Some examples

va(N) = [(1,2,3,4,..)] =

v0({2,4,6,8,..}) = [(0,1,1,2,2,3,3,4,4,..)] = L%J

va({1,4,9,16,25..}) = [(1,1,1,2,2,2,...)] = [ V]



Some general rules

A G B = v(A) <vo(B). (2)
Va(AU B) = v4(A) + va(B), whenever ANB=10. (3)
Vo(AU B) = vo(A) + vo(B) — va(AN B). (4)



Numerosities vs numbers Ny and w

- In Cantor’s theory any subset of N can be either finite or of car-
dinality Ng. Similarly, there are no ordinal numbers in-between finite
numbers and w.

- The numerosity of any infinite subset of N is less than «, and
greater than any finite number.



v The End



