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In this article, general idea of focusing is studied within the framework of optics exten-
sion into general relativity (covariant optics). In a configuration of static spacetime, the
general, mathematically rigorous treatment of rays, wavefronts and caustics of spherical
symmetry is presented, particularly with regard to problems of obtaining them within
general relativity. An original result is the aberration formulation to covariant optics,
whose application is given in this paper; a particular solution of Einstein equations is
finally chosen to provide concrete, exact results of cluster focal length and its aberration
structure. In this way, a gravitational lensing situation is shown to be a true lens.
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Introduction

The gravitational lensing, as comprehensively described, e.g. in [1], is very suc-
cessful in providing reasonable results, e.g. [2–4]. Recently, the trend of mathemat-
ically more sophisticated treatment appeared, see e.g. [5, 6]. Though very potent,
most of these approaches are, however, only further approximations to relativistic
optics — which is hereby defined as an extension of geometrical optics [7] to curved
case, i.e. the covariant eikonal equation and lowest-order amplitude transfer co-
variant equation [8]. In this article, parts of aberrational formulation to relativistic
optics (which is exact from the viewpoint of gravitational lensing) are studied.

Many principal ideas of classical optics are valid in curved spacetimes as well,
however, there are some, that cannot be treated therein. Yet, some of the latter can
be redefined in a generalised way, so that they are meaningful in curved cases and
reduce to well established ones in the flat case. The idea of (positive) focusing is
abstract enough in this sense, when requiring that adjacent rays touch (in mathe-
matical sense). We show in this article, how this can be dealt with via caustic study
within curved spacetimes.

We shall present the treatment in static, spherically symmetric case, allowing
us — after choosing, e.g., a point source of radiation — to unambiguously identify
the optical axis with symmetry axis and make use of simplifications gained from
symmetry. From the mathematical insight [9], we expect the caustic to be shaped as
a revolution of cusp type catastrophe. Also, only spherical aberrations of (generally)
all orders are expected to rise for any axisymmetric source.
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Dušan Hemzal

As a general relativistic specificity, the Legendre transformation, carrying eikon-
als of momentum and coordinate representations between each other, usually cannot
be implemented analytically in a curved spacetime, due to mathematical complica-
tions. Thus it is of particular interest to be able to follow procedures, that utilise
single representation formulae, or, to find connective formulae in Legendre trans-
formation’s stand, which is also the goal of this article.

Eikonal, rays, and caustic

Let there be a static spherically symmetric solution of Einstein equations, valid
in spacetime region Σ. In spherical coordinates (r, ϑ, ϕ), this generally admits the
metric

Σ : ds2 = gtt(r) c2dt2 − grr(r) dr2 − r2( dϑ2 + sin2ϑdϕ2) , (1)

with c the speed of light. On a non-empty intersection σ with equatorial surface
ϑ = π/2 this brings

Σ|ϑ=π/2 = σ : ds2 = gtt c
2dt2 − grr dr2 − r2 dϕ2 .

In the rest of the paper we shall restrict ourselves to this cross-section. Utilising
the usual variable separation method [10], the solutions to the eikonal equation
ψ,jψ,j = 0 of the form (j, m being integers)

Θσ : ψ − ψ0 =
ω

c
t− (−1)kpϕϕ− (−1)m

∫ √
ω2

c2
grr

gtt
− p2ϕ

grr

r2
dr (2)

are its complete integrals on this cross-section, while their Hessian is non-zero.
Consequently, (2) may serve as a (momentum) eikonal. Individual terms in previous
equation change sign, whenever change in the direction of appropriate coordinate
takes place along the path studied. Denote a(pϕ) the root(s) of the last integrand.
With the positive definiteness of metric coefficient(s) — as introduced in (1) — this
yields

a(pϕ) :
ω2

c2gtt(a)
−
p2ϕ
a2

= 0 . (3)

The particular eikonal realising a testing field point source at [rs, ϕs] is then

θσ : ψ(t, r, ϕ)− ψ0(t0, rs, ϕs)

=
ω

c
(t− t0)− (−1)kpϕ (ϕ− ϕs)− (−1)m

a∫
rs

∓
r∫

a

√
grr(y)

(
ω2

c2gtt(y)
−
p2ϕ
y2

)
dy; (4)

the sign minus or plus between the two integrals depends on whether r = a on
the ray lies between the considered end-points of the ray, or not, respectively. The
previous expression is also valid for regular points a, so (4) is valid for all points
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within considered segment of path. The notation itself is to be understood as

−
∫ b

a

−
∫ d

c

f(y) dy ≡ −
(∫ b

a

f(y) dy −
∫ d

c

f(y) dy

)
.

Following now the canonical procedure, the particular ray equation is then πσ =
∂θσ/∂pϕ; upon using the Leibniz rule it reads

πσ : ϕ− ϕs = (−1)k+m

a∫
rs

∓
r∫

a

pϕ
√
grr

y2

√
ω2

c2gtt
−
p2ϕ
y2

dy

− (−1)k+m

(
∂a

∂pϕ

± ∂a

∂pϕ

)[√
grr

(
ω2

c2gtt
−
p2ϕ
y2

)]
y=r0

. (5)

Due to the equation (3) for rootial points and regular end-points independence of
pϕ, equation (5) generally simplifies to

πσ : ϕ− ϕs = (−1)k+m

a∫
rs

∓
r∫

a

pϕ
√
grr

y2

√
ω2

c2gtt
−
p2ϕ
y2

dy . (6)

The vanishing of last term in (5) has a simple interpretation: despite of acquired
discontinuity of integrand at rootial points, there is no discontinuity of ray itself in
any end-point. It also follows from (6) that

dr
dϕ

∣∣∣
r=a

= 0,

hence as long as a is a root of odd multiplicity, r = a gets clear meaning of turning
point on a ray: here, the ray radial coordinate difference must change sign to keep
the square-rooted term non-negative for the ray to continue past this point.

The Legendre transformation to obtain the coordinate eikonal would mean to
eliminate pϕ from (4) using (6). That, unfortunately, is generally not analytically
possible. On the other hand, it is simple to eliminate ϕ − ϕs, after which one
obtains an eikonal along ray — the object closest to wavefront(s) description, that
is generally available:

λσ : ψpϕ
− ψ0 =

ω

c
(t− t0)− (−1)m

a∫
rs

∓
r∫

a

ω2√grr

c2gtt

√
ω2

c2gtt
−
p2ϕ
y2

dy . (7)

Obtaining the caustic κσ = ∂πσ/∂pϕ is not as straightforward as that of ray equa-
tion (5), for now there remains a dependence of integral rootial end-points on
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a derivation parameter, but discontinuity of the integrand in these end-points is
added. This precludes the use of Leibniz rule — the way how to proceed with gen-
eral calculation is to remove the parameter dependence of the end-point(s). This
can be done separately in the two integrals of (6) by transformations

ξ1 =
y − rs
a− rs

, ξ2 =
y − a

r − a
.

Differentiating the ray equation after transformations and consequently returning
to the original variables, we finally obtain (with prime denoting differentiation with
respect to the radial coordinate)

κσ : 0 =∫ a

rs

{
gtt(ω2y2 − c2gttp

2
ϕ)

[
2g2

rr

(
∂a

∂pϕ

pϕ − a+ rs

)
+
∂a

∂pϕ

pϕ(y − rs)(g′rr − 4g2
rr)

]

+ pϕg
2
rr

[
2c2g2

ttpϕy(a− rs) +
∂a

∂pϕ

(y − rs)(ω2g′tty
3 + 2c2g2

ttp
2
ϕ)

]}

× dy

2(a− rs)g
3/2
rr g2

tty
5

(
ω2

c2gtt
−
p2ϕ
y2

)3/2

∓
r∫

a

{
gtt(ω2y2 − c2gttp

2
ϕ)

[
2g2

rr

(
∂a

∂pϕ

pϕ − a+ r

)
+
∂a

∂pϕ

pϕ(y − r)(g′rr − 4g2
rr)

]

+ pϕg
2
rr

[
2c2g2

ttpϕy(a− r) +
∂a

∂pϕ

(y − r)(ω2g′tty
3 + 2c2g2

ttp
2
ϕ)

]}

× dy

2(a− r)g3/2
rr g2

tty
5

(
ω2

c2gtt
−
p2ϕ
y2

)3/2
. (8)

Equation (8) is the sought one for caustic, if only last integrals uniformly con-
verge. The transformations used were linear; other approaches are possible, e.g.,
transformations of the type y = a± ξ2 would remove the singularity of integrands
in turning end-points. Of course, when there are no turning points present within
the ray segment under consideration, the caustic from (2) is simply

0 =
∫
ω2√grr

c2gtt

dr

r2

(
ω2

c2gtt
−
p2ϕ
r2

)3/2
. (9)

As an example consider Minkowski spacetime, which can be covered by a
single metric

R2×S2 = Σ : ds2 = c2dt2 − dr2 − r2 dϑ2 − r2sin2ϑdϕ2 .
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According to (6 ), the ray equation on the equatorial section is in such a case

πσ : ϕ− ϕs = (−1)k+m

a∫
rs

∓
r∫

a

pϕ

y2

dy√
ω2

c2
−
p2ϕ
y2

.

To be able to profit from the general construction developed, we shall not
explicitly calculate the last integral. In that way, at last, the caustic as (8 )
becomes

κσ : (−1)k+m

(
1√

r2 − �2
± 1√

rs2 − �2

)
= 0,

with � = (pϕc)/ω non-negative without loss of generality. It is now clearly
seen, that before the ray turning point of r = � as from (3 ), there lies the
only caustic point — the source itself at r = rs (the second coordinate ϕ = ϕs

is obtained from the ray equation stated above in this example). After turning
point, there are no caustic points at all (in correspondence with the beams
constant divergence). Also, for the calculation presented, r ≥ � has to hold.
In this way, in the flat case, � has directly the meaning of the ray closest
advance point towards origin (i.e. turning point) radial coordinate. In the
further, we stick to this notation and shall label the rays by �.

The geometry

Let the solution of interest of Einstein equations consist of two metrics, properly
sewed on r = r0, with the point source of radiation at [rs, ϕs] lying not in the inner
region rs ≥ r0.

The particular eikonal for a general ray passing into the inner region at [r0, ϕin]
and leaving it subsequently at [r0, ϕout] after passing the turning point of r = a,
as visualised by Fig. 1, becomes

θ : ψ − ψ0 =
ω

c
(t− t0)− (−1)k

ω

c
�(ϕ− ϕs)

− (−1)m
ω

c

r0∫
rs

−
r∫

r0

Θouter(y) dy − 2(−1)m
ω

c

a∫
r0

Θinner(y) dy ,

where

Θ(y) ≡

√
grr(y)

(
1

gtt(y)
− �2

y2

)

are integrands from (4), with the subscript choosing solution, whose metric coeffi-
cients are appropriate. Then the particular ray equation reads

π : ϕ− ϕs = −(−1)k+m

r0∫
rs

−
r∫

r0

Πouter(y) dy − 2(−1)k+m

a∫
r0

Πinner(y), (10)
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2rg

[r0 , in]

[r0 , out ]

[rs , s ]

r = a

[r, ]ϕ

ϕ

ϕ
ϕ

Fig. 1. The sketch of the geometrical situation concerning a ray (thick curve): within
the great circle the inner solution is valid, with the black ring showing extent of mass-
critical radius. Note, that no further scaling information is needed, if radial coordinate is

expressed in critical radii.

where

Π(y) =
∂Θ(y)
∂�

≡ �
√
grr(y)

y2

√
1

gtt(y)
− �2

y2

are integrands from (6). In this way, only those situations, when rays, that enter
the inner solution region, exhibit in it its (single) turning point and after leaving
to outer one, they (from symmetry) show no other turning points, are taken into
account.

Let us now formally evaluate the caustic κ = ∂π/∂�. As there are no turning
points within outer solution, the integrands exhibit no singularities up to its border
as well as the integration end-points are simply constant there. Thus,

κ :

r0∫
rs

−
r∫

r0

Kouter(y) dy + 2
∂

∂�

a∫
r0

Πinner(y) dy = 0,

where

K(y) =
∂Π(y)
∂�

≡
√
grr(y)
gtt(y)

1

y2

(
1

gtt(y)
− �2

y2

)3/2

are (up to a constant) integrands as in (9). The lengthy calculation according to
(8) is not required in second term of caustic, if we happen to know the value J of
the full angular accrument along the ray within the inner solution analytically:

2

a∫
r0

Πinner(y) dy = J(�);
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in that case, we finally obtain the equation of caustic in the form

ϕ− ϕs = −(−1)k+mJ − (−1)k+m

r0∫
rs

−
r∫

r0

�
√
grr

y2

√
1
gtt

− �2

y2

dy

0 =
∂J

∂�
+

r0∫
rs

−
r∫

r0

√
grr

gtt

dy

y2

(
1
gtt

− �2

y2

)3/2
,

where all metric coefficients present belong to the outer solution. To obtain caustic
in parametric form, the second of equations must be understood as implicit equation
for r(�), and subsequently the first one as an explicit equation for ϕ(�, r(�)). Even
though � is not generally the value of turning point radial coordinate, still, � = 0
is the only ray passing through origin. Thus, an expansion in the vicinity of optical
axis (coming from symmetry) is acquired by expanding the coordinates for small
�. Using implicit derivatives formulae we obtain general (parametric) expression of
caustic

r(�) = r(0) +
r(0)2

gtt
√
grr

∂2J

∂�2

∣∣∣∣∣
0

�+
r3(0)
g3

ttgrr




∂3J

∂�3

∣∣∣∣∣
0

+3

r0∫
rs

−
r(0)∫
r0

√
grrg

2
tt

y4
dy


√

grrg
2
tt

r(0)

− gttg
′
rrr(0) + 2r(0)grrg

′
tt − 4grrgtt

2grr

(
∂2J

∂�2

∣∣∣∣∣
0

)2

 �2

2
+ . . . ,

ϕ(�) =
(
ϕs − (−1)k+mJ(0)

)
− (−1)k+m


∂J

∂�

∣∣∣∣∣
0

+

r0∫
rs

−
r(0)∫

r0

√
gttgrr

y2
dy


 �

− (−1)k+m

(
1 +

2
√
gtt

)
∂2J

∂�2

∣∣∣∣∣
0

�2

2
+ . . .

(11)

with r(0) ≡ r|�=0 defined implicitly as

r(0) :

r0∫
rs

−
r∫

r0

gtt
√
grr

y2
dy +

∂J

∂�

∣∣∣∣∣
0

= 0 ;

outside integrals, all metric coefficients in last equations are to be treated as eval-
uated in r(0).
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The equation of projection of eikonal along ray (7) is

λ : ψ� − ψ0 = −(−1)m
ω

c

r0∫
rs

−
r∫

r0

Λouter(y) dy − 2(−1)m
ω

c

a∫
r0

Λinner(y) dy,

where

Λ(y) = Θ(y) + �
∂Θ(y)
∂�

≡
√
grr

gtt

√
1
gtt

− �2

y2

are (up to a constant) integrands from (7). Taking now the equation ψ� = const
of constant phase accrument along ray for implicit expression for r(�) of the wave-
front (into the constant, the signs and factor ω/c are set to stick to geometrical
substantiality of wavefront) and using ray equation similarly to the case of caustic,
one finally obtains the parametric expression of wavefront in the form

r(�) = r(0) +
√
gtt

grr

∂I

∂�

∣∣∣∣∣
0

�

+
√
gtt

grr


∂2I

∂�2

∣∣∣∣∣
0

+

r0∫
rs

−
r(0)∫

r0

√
grrgtt

y2
dy− 1

2

(
∂I

∂�

∣∣∣∣∣
0

)2
g′rrgtt − grrg

′
tt√

grr
3√gtt


�2

2
+. . . ,

ϕ(�) =
(
ϕs − (−1)k+mJ(0)

)
− (−1)k+m


∂J

∂�

∣∣∣∣∣
0

+

r0∫
rs

−
r(0)∫

r0

√
gttgrr

y3
dy


 �

− (−1)k+m

(
1− 2

gtt

r(0)2
∂I

∂�

∣∣∣∣∣
0

)
∂2J

∂�2

∣∣∣∣∣
0

�2

2
+ . . .

(12)

with r(0) implicitly defined now from

−
r0∫

rs

−
r(0)∫

r0

√
grr

gtt
dy − I(0) = const. ;

I(�) is the ray total phase accrument along ray within the inner part of solution,

2

a∫
r0

Λinner(y) dy = I(�) .

Note the connection between the two parametric expressions: the one for caustic
(11) and that of wavefront (12). This connection, as suggested by the fact that both
make use the ray equation (10), reduces in the flat case to the fact that the caustic
is an evolute of the wavefronts. For more detailed discussion, see [11].
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Particular metric and the results

Let us choose for particular configuration the inner constant mass-density un-
charged fluid solution and the outer, Schwarzschild one [12], with the field of electro-
magnetic point source testing. On the equatorial section ϑ = π/2 we obtain

ds2 =


3
2

√
1− rg

r0
− 1

2

√
1− rgr2

r03




2

c2dt2 − 1

1− rgr
2

r03

dr2 − r2 dϕ2, r ≤ r0

ds2 =
(
1− rg

r

)
c2dt2 − 1

1− rg
r

dr2 − r2 dϕ2, r ≥ r0 .

with rg the critical radius of matter involved, rg = (2MG/c2) in SI units. This
choice can serve as a reasonable depiction of an astrophysical configuration, more-
over, the (dimension-independent) perfect fluid metric allows for analytical results.

Within the Schwarzschild solution, all integrals involved in (4)–(8) are elliptic,
approving the introduction. However, owing to the advantage of focus definition,
the reduced integrals within expansion coefficients of (11), (12) are elementary.
Recalling that � ≥ 0 was chosen, we state the turning points for metrics chosen,

aSchw =
2�√
3
cos

(
π

3
− 1

3
arccos

3
√
3

2�

)
,

afl =
3
r0
�

√
1− rg

r0
−

√
r0

2

�2
− 2rg
r0

+
9r2g
4r02

2
r0
�2

+
rg
2r02

.

It is a matter of lengthy discussion of technical kind, that their behaviour is as
expected in previous section, i.e. for rays closing to origin from high radial values,
the stated expressions are the only turning points present; moreover, for all rays
that are to enter fluid, aSchw < r0 holds. More interestingly, for a fluid chosen,

J = −π −
∑
±

arcsin

3�2rg(r0 − rg)√
r0

∓ �2rg
√
r0 − rg − 2r03

(√
r0 ∓

√
r0 − rg

)
r0

(√
r0 − rg ∓

√
r0
)√

4r04 − 8�2rgr0 + 9�2r2g

,

where the double signs stand for summing two terms within J , once with upper
signs and once with the lower ones. Then r|�=0 for caustic becomes

r(0) =
r0

2rs
3rgrs − r02

, (13)

which is the value of the radial coordinate of the caustic axial point, i.e. the radial
position of the lens focus. Note that though emerged from expansions, by definition
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of the focus, this value is exact. Following the calculations, we can write for the
metrics chosen

I = −4
ωr0

2

crg

√
8
r0
rg

− 9


π

2
+ arcsin

r
3/2
0 (3rg − 2r0)

√
r0 − rg

√
4r04 + 9�2r2g − 8�2rgr0


 .

Adopting another result from [11], the general form of axial wavefront h = const
within Schwarzschild geometry is

h = [r + rg ln(r − rg) + c0]

+
r

−2 + rc2
(ϕ − ϕA)2 +

− 1
2rg + 2

3r + r4c4

(−2 + rc2)4
(ϕ− ϕA)4 + . . . , (14)

i.e., to completely describe such wavefront, a single constant in every order of
expansion is to be specified. To find the value of ϕA around which to expand the
wavefront, we proceed as follows. The choice of point source has unambiguously
given rise to optical axis as coordinate line passing through source and origin. The
optical axis is thus realized by ray � = 0 which gives e.g. from (12)

ϕ = ϕs − (−1)k+mJ(0) = ϕs + (−1)k+mπ,

which, indeed, is the continuation of coordinate line ϕ = ϕs. Note, that the same
holds for caustic (11), i.e. the cusp of a caustic, which is also the focus point, lies
on this axis, as anticipated in introduction. The integers k, m also confirm to rule
the orientation of the ray(s).

Substituting into general expression (14) the equation (12) for eikonal along
ray and re-expanding in powers of �, enables us to find the values of aberration
constants in the form

c0 = −I(0)− 2[r0 + rg ln(r0 − rg)] + rs + rg ln(rs − rg) ,

c2 = 2
3rsrg − r0

2

r02rs
, (15)

c4 = − 1
3r06

(81r3g − 108r2gr0 + 15rgr02 + 16r03) +
2

3rs3
− 1

2
rg
rs4

,

...
To find the wave aberration in terms of wave-progress difference, let us state the
aberration coefficients within Schwarzschild solution for axial point source [r′s, ϕA]
wavefronts h′ = const′ before turning point:

c′0 = const′ + r′s + rg ln(r′s − rg) ,

c′2 =
2
r′s
,

c′4 =
1
6
3rg − 4r′s
r′s

4 ,

...
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2rg

Fig. 2. The situation for far-source wavefronts near detail of caustic (thick curve). Depicted
are the phase equi-spaced wavefronts, the bold segments showing the inner region traversed
part. The � parameter extent is the same for all wavefronts shown. As can be noted, the
caustic indeed serves as a set of wavefronts singularities. Also note that the orientation
of caustic is opposite to the case of reflection on a spherical mirror. In other words, the
spherical aberration (of lowest order at least) for the cluster is of opposite sign to the

mirror one.

Now, as a basis of aberration formulation, the first two terms in expansion of wave-
progress difference

h− h′ = (c0 − c′0) +
r2(c′2 − c2)

(−2 + rc2)(−2 + rc′2)
(ϕ− ϕA)2

+


−rg

2
+

2r
3

+ r4c4

(−2 + rc2)4
−

−rg
2

+
2r
3

+ r4c′4

(−2 + rc′2)4


 (ϕ− ϕA)4 + . . . (16)

can be always annihilated by suitable choice of reference (point) source position
and phase. Particularly here, for any r′s, the const

′ can be set to equal c0 = c′0, and,
confronting the second aberration coefficients, we obtain

c2 = c′2 : r′s =
r0

2rs
3rsrg − r02

in direct agreement with (13). In this way, within Gaussian optics, the focus point
is the apparent point source for emerging wavefronts (see Fig. 2). The first non-zero
term gives rise to the wave-progress difference expansion

h− h′ =
r4(c4 − c′4)
(−2 + rc2)4

(ϕ− ϕA)4 + . . . (17)

which is the lowest spherical aberration term. The behaviour of higher order terms
is similar: the condition that the wave-progress difference is zero only, if the wave-
fronts are identical (ck = c′k) is manifest; note, however, that for such behaviour,
the general possibility of identification of the two lowest aberration coefficients is
crucial. This behaviour forms the fundaments of Gaussian optics.
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Conclusion

In this paper, the author presented a general way of mathematically rigorous ma-
nipulation with optical ideas of focusing via caustic study within the frame of the
general relativity. Expressions for caustic (11) and wavefront in the sense of the
eikonal along ray (12) for testing electro-magnetic field on the equatorial section
of static spherically symmetric space-time were obtained. As a consequence, upon
choosing particular configuration, the exact value of perfect fluid lens focus (13)
was given for a testing-field point source,

rf ≈ r0
2

3rg
,

here in the far-source limit (see Fig. 3).

2rg

Fig. 3. The caustic (thick curve) situation of cluster with r0 = 7rg for far-source configu-
ration. The caustic cusp point (the focus of a system) is then at r = 161/3rg. Several inner
rays are shown, all inevitably touching the caustic, that actually extends to radial infinity
before touching the boundary ray. Hence, despite the diffractional corrections, the optical

influence of cluster intervenes in a significant range of ambient universe.

Also, the constants (16) in the aberration expansion of the wavefront were ob-
tained, moreover, solely using momentum representation formulae. In addition, a
comparison with point-source aberrations was performed, confirming the Gaussian
position of focus. The expansion of wave-progress difference (17) was acquired,
which starts with the lowest spherical aberration term, as expected.

Making use of the general treatment presented in the paper, results for different
configurations are easily obtainable.
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