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Outline

* What are these fibers (and why should I care)?
e The guiding mechanisms: index-guiding and band gaps
* Finding the guided modes

e Small corrections (with big impacts)
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Ly

more complex profiles losses ~ 0.2 dB/km
to tune dispersion at A=1.55um
(amplitiers every
“high” inde 50—100km)
doped-silica co

n~ 146

\ “LPOI”
silica cladding confined mode
n~ 145 field diameter ~ 8um et
| - but this is
poTyInet ~ as good as
sheath .
1t gets...

wi & K. N. Sivarajan, Optical D



The Glass Ceiling: Limits of Silica

Loss: amplifiers every 50—100km

...limited by Rayleigh scattering (molecular entropy)
...cannot use “‘exotic”’ wavelengths like 10.6um

Nonlinearities: after ~100km, cause dispersion, crosstalk, power limits
(limited by mode area ~ single-mode, bending loss)
also cannot be made (very) large for compact nonlinear devices

Radical modifications to dispersion, polarization effects?
...tunability 1s limited by low index contrast

] ]
I High Bit-Rates Compact Devices

Long Distances _ ,
Dense Wavelength Multiplexing (DWDM)




Breaking the Glass Ceiling:
Hollow-core Bandgap Fibers

1000x better Bragg fiber

loss/nonlinear limits

[ Yehetal., 1978 ]

(from density)

1d

crystal
+ omnidirectional

= OmniGuides
@ 24
crystal
Photonic Crystal \
)

(You can also
put stuff in here ...)

PCF

[ Knight et al., 1998 ]




Breaking the Glass Ceiling:
Hollow-core Bandgap Fibers

Bragg fiber
R [ Yeheral., 1978 |

[ figs courtesy
Y. Fink et al., MIT |

+ omnidirectional
= OmniGuides

[ R. F. Cregan
et al.,
Science 285,
1537 (1999) ]




[ figs courtesy
Y. Fink et al., MIT |

Guiding @ 10.6ym
(high-power CO, lasers)
loss < 1 dB/m
(material loss ~ 10* dB/m)

[ Temelkuran et al.,
Nature 420, 650 (2002) ]

Guiding @ 1.55um

[R. ft- flfegan loss ~ 13dB/km
Science 285, [ Smith, et al.,

1537 (1999) | Nature 424, 657 (2003) ]

BlazePhotonics

OFC 2004: 1.7dB/km T




Breaking the Glass Ceiling II:
Solid-core Holey Fibers

solid core

90000
00000 holey cladding forms
90000720 effective

000N 000
000 00000
00000000
0000000
0900000
90000
’CCQ

low-1ndex material

Can have much higher contrast
than doped silica...

strong confinement = enhanced
nonlinearities, birefringence, ...

[ J. C. Knight et al., Opt. Lett. 21, 1547 (1996) |




Breaking the Glass Ceiling II:
Solid-core Holey Fibers

nonlinear fibers
endlessly
) pma S aea [ Wadsworth et al.,
single-mode WEL . JOSAB19,
S e 2148 (2002) |

[ T. A. Birks et al.,
Opt. Lett. 22,
961 (1997) |

O OO0 O polarization
| e . -maintaining 1
[ K. Suzuki, O.W—Con.trast
linear fiber

) ) O ) (Emeyzs Express 9,

v 7Pl 676 (2001) ] (large area)

[ J. C. Kni¢ht et al.,
Elec. Lett. 34,
1347 (1998) ]
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Universal Truths: Conservation Laws

an arbitrary-shaped fiber

(1) Linear, time-invariant system:
(nonlinearities are small correction)

frequency w 1s conserved

(2) z-invariant system:
(bends efc. are small correction)

wavenumber f3 is conserved

electric (E) and magnetic (H) fields can be chosen:

E(x,y) ei(Bz = u)t), H(x,y) ei(ﬁz — W?)




’ Sequence of Computation

(1) Plot all solutions of infinite cladding as w vs. 3

WA
“light cone”

7

7 g

empty spaces (gaps): guiding possibilities

(2) Core introduces new states in empty spaces
— plot w(P) dispersion relation

(3) Compute other stuff...



Conventional Fiber: Uniform Cladding

C y 2
uniform cladding, index n W= J /J) + ‘kt‘
n

L <P

n




Conventional Fiber: Uniform Cladding

2 2
uniform cladding, index n W= J /J) + ‘kt‘
n

higher-order

fundamental

core with higher index n’
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index-guided mode(s)
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PCEF: Periodic Cladding

periodic cladding e(x,y)  Bloch’s Theorem for periodic systems:

fields can be written:

E(X,y) ei(BZ'l‘kt Xy — (Dl'), H(X,y) ei(ﬁZ+kt Xy — (Dt)

/

transverse (Xy)
Bloch wavevector Kk,

periodic functions
on primitive cell

primitive cell

- 1 W’ .
satisfies V, 5 % -V, g X H = _2H where:
eigenproblem t e ¢ Vis=V+ik +if2

(Hermitian constraint: Vk ‘H = O
if lossless) P




E PCF: Cladding Eigensolution

X 1th’ﬁ x H

Finite cell =¥ discrete eigenvalues , | \/
k,,
&

n

p
Want to solve for w, (k,, p),

n
2Hn
C

constraint: Vk . H=0
1o

& plot vs. 5 for “all” n, Kk,

o // where: V, o =V +iK, +ifZ
H(X,y) ei(6z+kt X; — Wt)
>

p

@ Limit range of K.: irreducible Brillouin zone

@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods




@ PCF: Cladding Eigensolution

@ Limit range of K_: irreducible Brillouin zone

—Bloch’s theorem: solutions are periodic in K,

first Brillouin zone ) k,
JT
= minimum |K | “primitive cell” 43 .

irreducible Brillouin zone: reduced by symmetry

@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods



E PCF: Cladding Eigensolution

@ Limit range of K : irreducible Brillouin zone

@ Limit degrees of freedom: expand H in finite basis

— must satisfy constraint: V

Planewave (FFT) basis
H(Xt) _ E HGeiG-Xr
G

constraint: HG . (G +K+ /32) =0

uniform “grid,” periodic boundaries,
simple code, O(N log N)

k,.p

‘H=0

Finite-element basis
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[ figure: Peyrilloux et al.,
J. Lightwave Tech.
21, 536 (2003) ]

constraint, boundary conditions:
Nédélec elements

[ Nédélec, Numerische Math.
35, 315 (1980) ]

nonuniform mesh,
more arbitrary boundaries,

complex code & mesh, O(N)

@ Efficiently solve eigenproblem: iterative methods



ﬁ PCF: Cladding Eigensolution

@ Limit range of K : irreducible Brillouin zone

@ Limit degrees of freedom: expand H in finite basis (V)

/

N
H=H(x)=>Y1b,x) sove: AH) =0’ H;
m=1
finite matrix problem: Ah = G)ZBh

<fg> =ff* g Amé = <bmAb€> Bmf = <bmb€>

@ Efficiently solve eigenproblem: iterative methods



@ PCF: Cladding Eigensolution

@ Limit range of K : irreducible Brillouin zone
@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w’Bh

Slow way: compute A & B, ask LAPACK for eigenvalues
— requires O(N?) storage, O(N?) time

Faster way:
— start with initial guess eigenvector /i,
— iteratively improve
— O(Np) storage, ~ O(Np?) time for p eigenvectors

(p smallest eigenvalues)



@ PCF: Cladding Eigensolution

@ Limit range of K : irreducible Brillouin zone
@ Limit degrees of freedom: expand H in finite basis
@ Efficiently solve eigenproblem: iterative methods

Ah = w’Bh

Many iterative methods:

— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...

Rayleigh-quotient minimization



@ PCF: Cladding Eigensolution

@ Limit range of K : irreducible Brillouin zone
@ Limit degrees of freedom: expand H in finite basis

@ Efficiently solve eigenproblem: iterative methods

Ah = w’Bh

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, ...,
Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue w, minimizes:

v
“variational (1)2 — min h' Ah minimize by conjugate-gradient,
theorem” 0o .
n K Bh (or multigrid, efc.)




w (2nc/a)

n=1.46

PCF: Holey Silica Cladding B0/
€ 9

r=0.1a

2.5
light cone

dimensionless units:
Maxwell’s equations
are|scale-invariant

15 N 2 25 3
B (2m/a)



w (2nc/a)

n=1.46

PCF: Holey Silica Cladding B0/
€ 9

r=0.17717a

2.5

light cone

1
2.5 |




w (2nc/a)

n=1.46

PCF: Holey Silica Cladding B0/
€ 9

r=0.22973a

2.5

light cone

1
2.5 |




w (2nc/a)

n=1.46

PCF: Holey Silica Cladding B0/
€ 9

r=0.30912a

2.5
| light cone

0.5

1 1 1 1
a 0.5 1 2 25 3



w (2nc/a)

n=1.46

PCF: Holey Silica Cladding B0/
€ 9

r=0.34197a

2 5|
light cone

1 1 1 1
a 0.5 1 2 25 3



w (2nc/a)

n=1.46

PCF: Holey Silica Cladding B0/
€ 9

r=0.37193a

E.El —

light cone

1
2.5 |




w (2nc/a)

n=1.46

PCF: Holey Silica Cladding B0/
€ 9

r=0.4a

2.5 = _

light cone

1
2.5 |




w (2nc/a)

n=1.46

PCF: Holey Silica Cladding B0/
€ 9

r=0.42557a

2.5

light cone

1
2.5 |




w (2nc/a)

n=1.46

PCF: Holey Silica Cladding B0/
€ 9

r=0.45a

2.5
. light cone

~ > gap-guided modes
g0 here

index-guided modes
g0 here

1 1 1 1
a 0.5 1 2 25 3

N En/a)



n=1.46

PCF: Holey Silica Cladding B0/
r=0.45a ) e a

above air line:
guiding 1n air core
1S possible

2.5

. light cone

_______________

__________________

w (2nc/a)

1.5 é
B (2m/a)
below air line: surface states of air core



Bragg Fiber Cladding

at large radius, Bragg fiber gaps (1d eigenproblem)

becomes ~ planar W
P n,. =4.6

1

n,=1.6

0)

e
radial k,

(Bloch wavevector)

0 by conservation

K of angular momentum —
¢ t wavenumber [3

B = 0: normal incidence




Omnidirectional Cladding

Bragg fiber gaps (1d eigenproblem)

omnidirectional
(planar) reflection

e.g. light from
fluorescent sources
is trapped for ny; / ny,

\/' big enough
and n, > 1

[ J. N. Winn et al,
Opt. Lett. 23, 1573 (1998) |

t wavenumber [3
ﬁ@ B = 0: normal incidence



Outline
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e The guiding mechanisms: index-guiding and band gaps
e Finding the guided modes

e Small corrections (with big impacts)



’ Sequence of Computation

(1) Plot all solutions of infinite cladding as w vs. 3

WA
“light cone”

7

7 g

empty spaces (gaps): guiding possibilities

(2) Core introduces new states in empty spaces
— plot w(P) dispersion relation

(3) Compute other stuff...



&/ Computing Guided (Core) Modes

1 W’
\% g% -V g % H,=—"7H, Same differential equation
e C as before,
constraint: V/a’ -H=0 ...except no Kk,
where: V, =V +if2 — can solve the same way

magnetic field = H(x,y) Pz

New considerations:

@ Boundary conditions
@ Leakage (finite-size) radiation loss

@ Interior eigenvalues




&/ Computing Guided (Core) Modes

@ Boundary conditions

computational cell

Only care about guided modes:
— exponentially decaying outside core

Effect of boundary cond. decays exponentially

— mostly, boundaries are irrelevant!
periodic (planewave), conducting, absorbing all okay

@ Leakage (finite-size) radiation loss

@ Interior eigenvalues



Guided Mode 1n a Solid Core

small computation: only lowest-w band!

0.12- (~ one minute, planewave)
| holey PCF light cone | flux density
_ 0.1 > t—
< ) /
| g
o 0.08-
5 v
_ _
g 0.06-
5 fundamental
& 4
. 0.04- mode
\O ] (two polarizations)
. I | n=1.46
Y—
0.02- v\\\\\\ 2r
: endlessly single mode: An_ decreases with A | ‘

LA DAL WL LR L B RN BRI a
03 04 05 06 07 08 09 1 11 12  ,._03g4
AN a



Fixed-tfrequency Modes?

&

Here, we are computing w(f'),
but we often want (w') — A 1s specified

No problem!

Just find root of w(P') — w', using Newton’s method:
(Factor of 3—4 in time.)

w—-o'
dow/ dp

B —p -

group velocity = power / (energy density)

(a.k.a. Hellman-Feynman theorem,
a.k.a. first-order perturbation theory,
a.k.a. “k-dot-p” theory)



&/ Computing Guided (Core) Modes

@ Boundary conditions

computational cell

Only care about guided modes:
— exponentially decaying outside core

Effect of boundary cond. decays exponentially

— mostly, boundaries are irrelevant!
periodic (planewave), conducting, absorbing all okay

...except when we want
(small) finite-size losses...

@ Leakage (finite-size) radiation loss

@ Interior eigenvalues



&/ Computing Guided (Core) Modes

@ Boundary conditions
(2) Leakage (finite-size) radiation loss

/ Use PML absorbing boundary layer

perfectly matched layer

[ Berenger, J. Comp. Phys. 114, 185 (1994) ]

...with iterative method that works for

non-Hermitian (dissipative) systems:
Jacobi-Davidson, ...

Or imaginary_distance BPM: [ Saitoh, IEEE J. Quantum Elec. 38, 927 (2002) ]

in imaginary z, largest p (fundamental) mode grows exponentially

@ Interior eigenvalues



&/ Computing Guided (Core) Modes

@ Boundary conditions
n=1.45

(7

@ [Leakage (finite-size) radiation loss

imaginary-distance BPM

e a [ Saitoh, IEEE J. Quantum Elec. 38, 927 (2002) ]
2 rings 3 rings
1ot 10°
£ ¢ E ol
% I =] -2
=, . = 10 i
% 10 I E Iﬂ,—--i- -_
109 p sk
. o ) %
§ T g W0r
J g Ly mr
£ 10 _ & ok
m—ﬂ . | . | . | . 14[ : . | : .
0 05 L0 15 20 05 05 L0 15 20
Wavelength [pum] Wavelength [ pum)

@ Interior eigenvalues



&/ Computing Guided (Core) Modes

@ Boundary conditions
@ Leakage (finite-size) radiation loss

@ Interior eigenvalues
[ J. Broeng et al., Opt. Lett. 25, 96 (2000) |

2.4

fundamental & 2nd order

. guided modes
Gap-guided modes 2o

lie above continuum -
(~ N states for N-hole cell) ; ,

w (2mc/a)

1 fundamental
...but most methods e
compute smallest ® h2 o L ‘-\/
(or largest B) ontinum |
0.8

.11 1.27 143 159 175 191 207 223 239

B (2m/a)



&/ Computing Guided (Core) Modes

@ Boundary conditions
@ Leakage (finite-size) radiation loss
@ Interior (of the spectrum) eigenvalues

Compute N lowest states first: deflation
(orthogonalize to get higher states)

[ see previous slide ]

Gap-guided modes
lie above continuum @ Use interior eigensolver method —
(~ N states for N-hole cell) ...closest eigenvalues to w,, (mid-gap)
Jacobi-Davidson,
Arnoldi with shift-and-invert,
smallest eigenvalues of (A—w,?)?

... convergence often slower

Other methods: FDTD, etc...

...but most methods
compute smallest w
(or largest )



’ Interior Eigenvalues by FDTD

finite-difference time-domain

AU N Simulate Maxwell’s equations on a discrete erid
00000 1 =

LY G‘ ® + PML boundaries + ¢F? z-dependence
@
o0

@
o0
(X XXX » Excite with broad-spectrum dipole (#) source

000000 /ﬂ

signal processing /\l Response 1s many

sharp peaks,
l J. Chem. Phys. 107, 6756 (1997)] [\ /\ one peak per mode

complex w,
[ Mandelshtam,

decay rate in time gives loss: Im[B] = — Im[w] / dw/df



’ Interior Eigenvalues by FDTD

finite-difference time-domain

AU N Simulate Maxwell’s equations on a discrete erid
00000 1 =

LY G‘ ® + PML boundaries + ¢F? z-dependence
@
o0

@
o0
(X XXX » Excite with broad-spectrum dipole (#) source

000000
A
l Response 1s many
/\ sharp peaks,
VA

one peak per mode

mode field pr()ﬁ]e _— /\ narrow-spectrum source



An Easier Problem: Bragg-fiber Modes

In each concentric region,
solutions are Bessel functions:
clJ, (kr)y+dY,(kr)

(O

“angular momentum”

At circular interfaces
match boundary conditions
with 4 x 4 transfer matrix

...search for complex [ that satisfies: finite at =0, outgoing at r=00

[ Johnson, Opt. Express 9, 748 (2001) ]



frequency w

Hollow Metal Waveguides, Reborn

metal waveguide modes OmniGuide fiber modes

1970’s imicrowaive tubesé
@ Bell La;bs

wavenumber [3 wavenumber [3

modes are directly analogous to those in hollow metal waveguide




lowest-loss mode,
just as 1n metal

(near) node at interface

= strong confinement \
= low losses 2 s

non-degenerate mode
— cannot be split

= no birefringence or PMD

e e v— — =S - R

......

An Old Friend: the TE,, mode

!

Vs NS e — T =



Bushels of Bessels
— A General Multipole Method

[ White, Opt. Express 9, 721 (2001) ]

Each cylinder has 1ts own Bessel expansion:

M
only cylinders allowed field ~ E cJ +dY

m
/ (m 1s not conserved)

With N cylinders,
get 2NM x 2NM matrix of boundary conditions

"4

Solution gives full complex 3,

but takes O(/N°) time future: “Fast Multipole Method”
— more than 4-5 periods is difficult should reduce to O(N log N)?




Outline
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All Impertections are Small

(or the fiber wouldn’t work)
* Material absorption: small imaginary Ag
 Nonlinearity: small Ae ~ [E|?

e Acircularity (birefringence): small € boundary shift
e Bends: small Ae ~Ax / R,_,

* Roughness: small Ae or boundary shift

Weak effects, long distances: hard to compute directly
— use perturbation theory



Perturbation Theory
and Related Methods

(Coupled-Mode Theory, Volume-Current Method, etc.)

Given solution for 1deal system
compute approximate eftect
of small changes

...solves hard problems starting with easy problems

& provides (semi) analytical insight




Perturbation Theory

for Hermitian eigenproblems

Al

given eigenvectors/values: (O

...find change Au & A

Solution:

N\
expand as power series in A

) = Uu,
u> for small AO

Au =0+ Au'” + Au'® +

‘ulAOlu)

Au® =

& Au)=0+Au'” +

<I/t ‘ l/t> (first order is usually enough)



Perturbation Theory

for electromagnetism

RO c* HAAH,
2 <H‘H> ...€.g. absorption
gives
2 imaginary Aw
— _waS‘E‘ = decay!
2 [€E?
dw

Aﬁ(l) = A" /vg V o=



A Quantitative Example

...but what about

the cladding?
Gas can have
...some field
low loss penetrates!

& nonlinearity

& may need to use
very “bad” material
to get high index contrast



Suppressing Cladding Losses

Material absorption: small imaginary Ae

10723
Mode Losses ]
Bulk Cladding Losses ' EH,,
1 0'3'5
Large differential loss
TE,, strongl 107
o1 gly suppresses ; TE
cladding absorption Ol
(like ohmic loss, for metal)
1 0-5 ! ot ol ! ot ! | ! ot | ! ot 1
1.2 1.6 2 2.4 2.8



High-Power Transmission

at 10.6um (no previous dielectric waveguide)

Polymer losses @10.6ym ~ 50,000dB/m...

Transmission (arb. u.)

o

-3.0
S
8 T—¢
& 35
%
[
i
o1 f
S -4.0
)
o
-
4 4
~ -4.5
2 4

| slope =-0.95 dB/m

R?=0.99

2.5

3.0 3.5
Length (meters)

7 8 9

4.0

Wavelength (um)

...waveguide losses ~ 1dB/m

h | B. Temelkuran et al.,
Nature 420, 650 (2002) ]

10 11 12

| figs courtesy Y. Fink et al., MIT |



Quantifying Nonlinearity

Kerr nonlinearity: small Ae ~ |E[2
AR ~ power P ~ 1 / lengthscale for nonlinear effects

vy=Ap /P

= nonlinear-strength parameter determining
self-phase modulation (SPM), four-wave mixing (FWM), ...

(unlike “effective area,”
tells where the field 1s,
not just how big)



Suppressing Cladding Nonlinearity

1075
Mode Nonlinearity* ]
Cladding Nonlinearity
10'7'5
: : il TEy,
Will be dominated by
nonlinearity of air
10°8-
~10,000 times weaker f
than 1n silica fiber
(including factor of 10 in area)
_9""|""|""|""|
10 1.2 1.6 2 2.4 2.8

* “nonlinearity” = AN / P =y A (um)



Acircularity & Perturbation Theory

(or any shifting-boundary problem)

Ae =¢, —¢&,

Ae =¢,—¢,

... Just plug Ag’s 1nto
perturbation formulas?

FAILS for high index contrast!

beware field discontinuity...
£ t t 1 . ! t. . t [ S. G. Johnson et al.,
ortunately, a simple correction exists PRE 65. 066611 (2002) ]



Acircularity & Perturbation Theory

(or any shifting-boundary problem)

Ae =¢, —¢&,

Ae =¢,—¢,

(continuous field components)

N
[ an[aek-a' D,
0, ') ]

Aa)(l) _ surf. -
2
2 fS‘E‘ [ S. G. Johnson et al.,

PRE 65, 066611 (2002) ]




Loss from Roughness/Disorder

>

imperfection acts like a volume current
J~AeE,

volume-current method
or Green’s functions with first Born approximation



Loss from Roughness/Disorder

>

imperfection acts like a volume current

o —_

J~AeE,

For surface roughness, N

including field discontinuities: J ~ Ag E' —& Ae™ D,



Loss from Roughness/Disorder

A

) AT —

uncorrelated disorder adds incoherently

So, compute power P radiated by one localized source J,
and loss rate ~ P * (mean disorder strength)



Eftect of an Incomplete Gap

on uncorrelated surface roughness loss

some radiation blocked

radiation ¥
-
g
= Q
g é .l. - .‘.
5 T ESININIEUNEIsTETEE
é = _——
V
S
“
Conventional waveguide ...with S1/S510, Bragg mirrors (1D gap)

(matching modal area)

50% lower losses (in dB)
same reflection



Considerations for Roughness LLoss

e Band gap can suppress some radiation
— typically by at most ~ 1/2, depending on crystal

e Loss ~ Ag? ~ 1000 times larger than for silica

e Loss ~ fraction of [El* in solid material
— factor of ~ 1/5 for 7-hole PCF
— ~ 107 for large-core Bragg-fiber design

e Hardest part 1s to get reliable statistics for disorder.



Using perturbations to design
big effects



Perturbation Theory and Dispersion

when two distinct modes cross & interact,
unusual dispersion is produced

® 1 mode 1

mode 2

/ no interaction/coupling

- P




Perturbation Theory and Dispersion

when two distinct modes cross & interact,
unusual dispersion is produced

mode 1

coupling: anti-crossing




Two Localized Modes
= Very Strong Dispersion

core mode

localized
cladding—defect mode _ -

’

weak coupling
= rapid slope change
= high dispersion
(> 500,000 ps/nm-km

+ dispersion-slope matching)
>

s

[ T. Engeness et al., Opt. Express 11, 1175 (2003) ]



(Different-Symmetry) SlOW—light Modes
= Anomalous Dispersion

() A

slow-light
band edges
at =0

— force different symmetry modes together

p=0 " P

[ M. Ibanescu et al., Phys. Rev. Lett. 92, 063903 (2004) ]




(Different-Symmetry) SlOW—light Modes
= Anomalous Dispersion

Weak Intermediate Strong Accidental
{a}interactiﬂﬂ (b) Interaction I[':]'irwteran:*.tiut:;n {d}degeneracy

0 m/ w0 w
/

/A AN
0 Vn k / 0 \ L0 \ p
backward wave slow light non-zero
ultra-flat (w*) velocity
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