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protective
polymer
sheath

Optical Fibers Today
(not to scale)

silica cladding
n ~ 1.45

more complex profiles
to tune dispersion

“high” index
doped-silica core

n ~ 1.46

“LP01”
confined mode

field diameter ~ 8µm

losses ~ 0.2 dB/km
at λ=1.55µm

(amplifiers every
50–100km)

but this is
~ as good as

it gets…
[ R. Ramaswami & K. N. Sivarajan, Optical Networks: A Practical Perspective ]



The Glass Ceiling: Limits of Silica

Long Distances
High Bit-Rates

Dense Wavelength Multiplexing (DWDM)

Loss: amplifiers every 50–100km

…limited by Rayleigh scattering (molecular entropy)
…cannot use “exotic” wavelengths like 10.6µm

Nonlinearities: after ~100km, cause dispersion, crosstalk, power limits
(limited by mode area ~ single-mode, bending loss)

also cannot be made (very) large for compact nonlinear devices

Compact Devices

Radical modifications to dispersion, polarization effects?
…tunability is limited by low index contrast



Breaking the Glass Ceiling:
Hollow-core Bandgap Fibers

1000x better
loss/nonlinear limits

(from density)

Photonic Crystal

1d
crystal

Bragg fiber
[ Yeh et al., 1978 ]

+ omnidirectional

= OmniGuides

2d
crystal

PCF
[ Knight et al., 1998 ](You can also

put stuff in here …)



Breaking the Glass Ceiling:
Hollow-core Bandgap Fibers

Bragg fiber
[ Yeh et al., 1978 ]

+ omnidirectional

= OmniGuides

PCF
[ Knight et al., 1998 ]

white/grey
= chalco/polymer

5µm[ R. F. Cregan 
et al., 

Science 285, 
1537 (1999) ]

[ figs courtesy 
Y. Fink et al., MIT ]

silica



Breaking the Glass Ceiling:
Hollow-core Bandgap Fibers

white/grey
= chalco/polymer

5µm[ R. F. Cregan 
et al., 

Science 285, 
1537 (1999) ]

[ figs courtesy 
Y. Fink et al., MIT ]

silica

Guiding @ 10.6µm
(high-power CO2 lasers)

loss < 1 dB/m
(material loss ~ 104 dB/m)

Guiding @ 1.55µm
loss ~ 13dB/km

[ Smith, et al.,
Nature 424, 657 (2003) ]

[ Temelkuran et al.,
Nature 420, 650 (2002) ]

OFC 2004: 1.7dB/km
BlazePhotonics



Breaking the Glass Ceiling II:

Solid-core Holey Fibers

solid core

holey cladding forms
effective

low-index material

[ J. C. Knight et al., Opt. Lett. 21, 1547 (1996) ]

Can have much higher contrast
than doped silica…

strong confinement = enhanced
nonlinearities, birefringence, …



Breaking the Glass Ceiling II:

Solid-core Holey Fibers

[ K. Suzuki,
Opt. Express 9, 

676 (2001) ]

polarization
-maintaining

[ Wadsworth et al.,
JOSA B 19,

 2148 (2002) ]

nonlinear fibers

[ T. A. Birks et al.,
Opt. Lett. 22, 
961 (1997) ]

endlessly
single-mode

[ J. C. Knight et al.,
Elec. Lett. 34,
1347 (1998) ]

low-contrast
linear fiber
(large area)
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Universal Truths: Conservation Laws

an arbitrary-shaped fiber

z
(1) Linear, time-invariant system:

(nonlinearities are small correction)

frequency ω is conserved

(2)      z-invariant system:
           (bends etc. are small correction)

wavenumber β is conserved

electric (E) and magnetic (H) fields can be chosen:

E(x,y) ei(βz – ωt), H(x,y) ei(βz – ωt)

cladding

core



Sequence of Computation

1 Plot all solutions of infinite cladding as ω vs. β

ω

β

empty spaces (gaps): guiding possibilities

2 Core introduces new states in empty spaces
— plot ω(β) dispersion relation

3 Compute other stuff…

“light cone”



Conventional Fiber: Uniform Cladding

uniform cladding, index n

kt

(transverse wavevector)

ω β

β

= +

≥

c
n
c
n

t
2 2k

ω

β

light cone

light line:
ω = c β / n

β



Conventional Fiber: Uniform Cladding

uniform cladding, index n ω β

β

= +

≥

c
n
c
n

t
2 2k

ω

β

light cone

β

core with higher index n’
pulls down

index-guided mode(s) ω = c β / n'

fundamental

higher-order



PCF: Periodic Cladding

periodic cladding ε(x,y)

β
a

primitive cell

Bloch’s Theorem for periodic systems:

fields can be written:

E(x,y) ei(βz+kt xt – ωt), H(x,y) ei(βz+kt xt – ωt)

periodic functions
on primitive cell

transverse (xy)
Bloch wavevector kt

∇ = ∇ + +k k z
t

i it, ˆβ β
∇ × ∇ × =k k H H

t t c, ,β βε
ω1 2

2

∇ ⋅ =k H
t ,β 0

where:satisfies
eigenproblem

(Hermitian
if lossless)

constraint:



PCF: Cladding Eigensolution

H(x,y) ei(βz+kt xt – ωt)

∇ = ∇ + +k k z
t

i it, ˆβ β

∇ × ∇ × =k k H H
t t n

n
nc, ,β βε

ω1 2

2

∇ ⋅ =k H
t ,β 0

where:

constraint:

1

Want to solve for ωn(kt, β),
& plot vs. β for “all” n, kt

Finite cell � discrete eigenvalues ωn

ω

β

Limit range of kt: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods



PCF: Cladding Eigensolution
1 Limit range of kt: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

—Bloch’s theorem: solutions are periodic in kt

kx

kyfirst Brillouin zone
= minimum |kt| “primitive cell”

4
3
π

aΓ

MK

irreducible Brillouin zone: reduced by symmetry



PCF: Cladding Eigensolution
1 Limit range of kt: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

∇ ⋅ =k H
t ,β 0— must satisfy constraint:

Planewave (FFT) basis

H x HG
G x

G

( )t
ie t= ⋅∑

H G k zG ⋅ + +( ) =βˆ 0constraint:

uniform “grid,” periodic boundaries,
simple code, O(N log N)

Finite-element basis
constraint, boundary conditions:

Nédélec elements
[ Nédélec, Numerische Math.

35, 315 (1980) ]

nonuniform mesh,
more arbitrary boundaries,

complex code & mesh, O(N)
[ figure: Peyrilloux et al.,

J. Lightwave Tech.
21, 536 (2003) ]



PCF: Cladding Eigensolution
1 Limit range of kt: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis (N)

3 Efficiently solve eigenproblem: iterative methods

H H x b x= =
=
∑( ) ( )t m m t
m

N

h
1

solve: Â H H=ω 2

Ah Bh=ω 2

  A Am ml l= b bˆ
  Bm ml l= b bf g f g= ⋅∫ *

finite matrix problem:



PCF: Cladding Eigensolution
1 Limit range of kt: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Ah Bh=ω 2

Faster way:
— start with initial guess eigenvector h0

— iteratively improve
— O(Np) storage, ~ O(Np2) time for p eigenvectors

Slow way: compute A & B, ask LAPACK for eigenvalues
— requires O(N2) storage, O(N3) time

(p smallest eigenvalues)



PCF: Cladding Eigensolution
1 Limit range of kt: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Ah Bh=ω 2

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,
     Rayleigh-quotient minimization



PCF: Cladding Eigensolution
1 Limit range of kt: irreducible Brillouin zone

2 Limit degrees of freedom: expand H in finite basis

3 Efficiently solve eigenproblem: iterative methods

Ah Bh=ω 2

Many iterative methods:
— Arnoldi, Lanczos, Davidson, Jacobi-Davidson, …,
     Rayleigh-quotient minimization

for Hermitian matrices, smallest eigenvalue ω0 minimizes:

ω0
2 = min

'
'h

h Ah
h Bh

minimize by conjugate-gradient,
(or multigrid, etc.) 

“variational
theorem”



PCF: Holey Silica Cladding 2r

a

n=1.46

β (2π/a)

r = 0.1a
ω

 (
2π

c/
a)

light cone

ω = βc

dimensionless units:
Maxwell’s equations

are scale-invariant



PCF: Holey Silica Cladding 2r

a

n=1.46

β (2π/a)

r = 0.17717a
ω

 (
2π

c/
a)

light cone

ω = βc



PCF: Holey Silica Cladding 2r

a

n=1.46

β (2π/a)

r = 0.22973a
ω

 (
2π

c/
a)

light cone

ω = βc



PCF: Holey Silica Cladding 2r

a

n=1.46

β (2π/a)

r = 0.30912a
ω

 (
2π

c/
a)

light cone

ω = βc



PCF: Holey Silica Cladding 2r

a

n=1.46

β (2π/a)

r = 0.34197a
ω

 (
2π

c/
a)

light cone

ω = βc



PCF: Holey Silica Cladding 2r

a

n=1.46

β (2π/a)

r = 0.37193a
ω

 (
2π

c/
a)

light cone

ω = βc



PCF: Holey Silica Cladding 2r

a

n=1.46

β (2π/a)

r = 0.4a
ω

 (
2π

c/
a)

light cone

ω = βc



PCF: Holey Silica Cladding 2r

a

n=1.46

β (2π/a)

r = 0.42557a
ω

 (
2π

c/
a)

light cone

ω = βc



PCF: Holey Silica Cladding 2r

a

n=1.46

β (2π/a)

r = 0.45a
ω

 (
2π

c/
a)

light cone

ω = βc index-guided modes
go here

gap-guided modes
go here



PCF: Holey Silica Cladding 2r

a

n=1.46

β (2π/a)

r = 0.45a
ω

 (
2π

c/
a)

light cone

air
 lig

ht 
lin

e ω
 = βc

above air line:
guiding in air core

is possible

below air line: surface states of air core



Bragg Fiber Cladding

at large radius,
becomes ~ planar

nhi = 4.6

nlo = 1.6

Bragg fiber gaps (1d eigenproblem)

wavenumber β

β

radial kr
(Bloch wavevector)

β = 0: normal incidence

kφ

0 by conservation
of angular momentum

ω



Omnidirectional Cladding

Bragg fiber gaps (1d eigenproblem)

wavenumber β
β β = 0: normal incidence

omnidirectional
(planar) reflection

for nhi / nlo

big enough
and nlo > 1

e.g. light from
fluorescent sources

is trapped

[ J. N. Winn et al,
Opt. Lett. 23, 1573 (1998) ]

ω
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Sequence of Computation

1 Plot all solutions of infinite cladding as ω vs. β

ω

β

empty spaces (gaps): guiding possibilities

2 Core introduces new states in empty spaces
— plot ω(β) dispersion relation

3 Compute other stuff…

“light cone”



Computing Guided (Core) Modes

magnetic field = H(x,y) ei(βz– ωt)

∇ = ∇ +β βi ẑ

∇ × ∇ × =β βε
ω1 2

2H Hn
n

nc

∇ ⋅ =β H 0

where:

constraint:

Same differential equation
as before,

…except no kt

— can solve the same way

1

New considerations:

Boundary conditions

2 Leakage (finite-size) radiation loss

3 Interior eigenvalues



Computing Guided (Core) Modes
1 Boundary conditions

2 Leakage (finite-size) radiation loss

3 Interior eigenvalues

Only care about guided modes:
— exponentially decaying outside core

computational cell

Effect of boundary cond. decays exponentially
— mostly, boundaries are irrelevant!

periodic (planewave), conducting, absorbing all okay



Guided Mode in a Solid Core
small computation: only lowest-ω band!

0

0.02

0.04

0.06

0.08

0.1

0.12

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

2r

a

n=1.46

r = 0.3a

1.
46

 –
 β

c/
ω

 =
 1

.4
6 

– 
n e

ff

λ / a

holey PCF light cone

fundamental
mode

(two polarizations)

endlessly single mode: ∆neff decreases with λ

flux density

(~ one minute, planewave)



group velocity = power / (energy density)
(a.k.a. Hellman-Feynman theorem,

a.k.a. first-order perturbation theory,
a.k.a. “k-dot-p” theory)

Fixed-frequency Modes?

Here, we are computing ω(β'),
but we often want β(ω') — λ is specified

No problem!

Just find root of ω(β') – ω', using Newton’s method:

′ ← ′ −
− ′

β β
ω ω
ω βd d

(Factor of 3–4 in time.)



Computing Guided (Core) Modes
1 Boundary conditions

2 Leakage (finite-size) radiation loss

3 Interior eigenvalues

Only care about guided modes:
— exponentially decaying outside core

computational cell

Effect of boundary cond. decays exponentially
— mostly, boundaries are irrelevant!

periodic (planewave), conducting, absorbing all okay

…except when we want
(small) finite-size losses…



Computing Guided (Core) Modes
1 Boundary conditions

2 Leakage (finite-size) radiation loss

3 Interior eigenvalues

Use PML absorbing boundary layer
perfectly matched layer

[ Berenger, J. Comp. Phys. 114, 185 (1994) ]

…with iterative method that works for
    non-Hermitian (dissipative) systems:

Jacobi-Davidson, …

[ Saitoh, IEEE J. Quantum Elec. 38, 927 (2002) ]

in imaginary z, largest β (fundamental) mode grows exponentially

Or imaginary-distance BPM:



Computing Guided (Core) Modes
1 Boundary conditions

2 Leakage (finite-size) radiation loss

3 Interior eigenvalues

imaginary-distance BPM 
[ Saitoh, IEEE J. Quantum Elec. 38, 927 (2002) ]

d

Λ

n=1.45

2 rings 3 rings



Computing Guided (Core) Modes
1 Boundary conditions

2 Leakage (finite-size) radiation loss

3 Interior eigenvalues

β (2π/a)

[ J. Broeng et al., Opt. Lett. 25, 96 (2000) ]

bulk
crystal

continuum

fundamental & 2nd order 
  guided modes

air lig
ht lin

e

fundamental
air-guided

mode

0.8

1.2

1.6

2.0

2.4

1.11    1.27      1.43     1.59     1.75     1.91      2.07     2.23     2.39

ω
 (

2π
c/

a)

Gap-guided modes
lie above continuum

(~ N states for N-hole cell)

…but most methods
compute smallest ω

(or largest β)



Computing Guided (Core) Modes
1 Boundary conditions

2 Leakage (finite-size) radiation loss

3 Interior (of the spectrum) eigenvalues

Gap-guided modes
lie above continuum

(~ N states for N-hole cell)

…but most methods
compute smallest ω

(or largest β)

i Compute N lowest states first: deflation
(orthogonalize to get higher states)

[ see previous slide ]

ii Use interior eigensolver method—
…closest eigenvalues to ω0 (mid-gap)

Jacobi-Davidson,
Arnoldi with shift-and-invert,
smallest eigenvalues of (A–ω0

2)2

… convergence often slower

iii Other methods: FDTD, etc…



Interior Eigenvalues by FDTD
finite-difference time-domain

Simulate Maxwell’s equations on a discrete grid,
+ PML boundaries + eiβz z-dependence

• Excite with broad-spectrum dipole (  ) source

∆ω

Response is many
sharp peaks,

one peak per mode
complex ωn [ Mandelshtam,

J. Chem. Phys. 107, 6756 (1997) ]

signal processing

decay rate in time gives loss: Im[β] = – Im[ω] / dω/dβ



Interior Eigenvalues by FDTD
finite-difference time-domain

Simulate Maxwell’s equations on a discrete grid,
+ PML boundaries + eiβz z-dependence

• Excite with broad-spectrum dipole (  ) source

∆ω

Response is many
sharp peaks,

one peak per mode

narrow-spectrum sourcemode field profile



An Easier Problem: Bragg-fiber Modes

In each concentric region,
solutions are Bessel functions:

c Jm (kr) + d Ym(kr)
× eimφ

“angular momentum”
k

c
= 



 −

ω
ε β

2
2

At circular interfaces
match boundary conditions
with 4 × 4 transfer matrix

…search for complex β that satisfies: finite at r=0, outgoing at r=∞

[ Johnson, Opt. Express 9, 748 (2001) ]



Hollow Metal Waveguides, Reborn

OmniGuide fiber modes

wavenumber βwavenumber β

fr
eq

ue
nc

y 
ω

metal waveguide modes

1970’s microwave tubes
@ Bell Labs

modes are directly analogous to those in hollow metal waveguide



An Old Friend: the TE01 mode

lowest-loss mode,
just as in metal

r
E

(near) node at interface
= strong confinement

= low losses

non-degenerate mode
— cannot be split

= no birefringence or PMD



Bushels of Bessels

Each cylinder has its own Bessel expansion:

—A General Multipole Method
[ White, Opt. Express 9, 721 (2001) ]

field ~ c J d Ym m m m
m

M

+∑
(m is not conserved)

With N cylinders,
get 2NM × 2NM matrix of boundary conditions

Solution gives full complex β,
but takes O(N3) time

— more than 4–5 periods is difficult
future: “Fast Multipole Method”

should reduce to O(N log N)?

only cylinders allowed
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All Imperfections are Small

• Material absorption: small imaginary ∆ε

• Nonlinearity: small ∆ε ~ |E|2

• Acircularity (birefringence): small ε boundary shift

• Bends: small ∆ε ~ ∆x / Rbend

• Roughness: small ∆ε or boundary shift 

(or the fiber wouldn’t work)

Weak effects, long distances: hard to compute directly
— use perturbation theory



Perturbation Theory
and Related Methods

(Coupled-Mode Theory, Volume-Current Method, etc.)

Given solution for ideal system
compute approximate effect

of small changes

…solves hard problems starting with easy problems

& provides (semi) analytical insight



Perturbation Theory
for Hermitian eigenproblems

given eigenvectors/values: Ô u u u=

…find change          &            for small∆u ∆ u ∆Ô

Solution:
expand as power series in ∆Ô

∆ ∆ ∆u u u= + + +…0 1 2( ) ( )

∆ ∆u u= + +…0 1( )&

∆
∆

u
u O u

u u
( )

ˆ
1 =

(first order is usually enough)



Perturbation Theory
for electromagnetism

∆
∆

∆

ω
ω

ω ε

ε

( )
ˆ

1
2

2

2

2

2

=

= − ∫
∫

c AH H
H H

E

E

∆ ∆β ω( ) ( ) /1 1= vg v
d
dg =
ω
β

…e.g. absorption
gives

imaginary ∆ω
= decay!



A Quantitative Example

Gas can have
low loss

& nonlinearity

…but what about
the cladding?

& may need to use
very “bad” material

to get high index contrast

…some field
penetrates!



Suppressing Cladding Losses

1x10-5

1x10-4

1x10-3

1x10-2

1.2 1.6 2 2.4 2.8

EH11

TE01

Mode Losses
÷

Bulk Cladding Losses

TE01 strongly suppresses
cladding absorption

(like ohmic loss, for metal)

Large differential loss

λ (µm)

Material absorption: small imaginary ∆ε



High-Power Transmission
at 10.6µm (no previous dielectric waveguide)

[ figs courtesy Y. Fink et al., MIT ]
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Wavelength (µµµµm)
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R2 = 0.99

Polymer losses @10.6µm ~ 50,000dB/m…

…waveguide losses ~ 1dB/m

[ B. Temelkuran et al.,
Nature 420, 650 (2002) ]



Quantifying Nonlinearity

∆β ~ power P ~ 1 / lengthscale for nonlinear effects

γ = ∆β / P

= nonlinear-strength parameter determining
self-phase modulation (SPM), four-wave mixing (FWM), …

(unlike “effective area,”
tells where the field is, 

not just how big)

Kerr nonlinearity: small ∆ε ~ |E|2



1x10-9

1x10-8

1x10-7

1x10-6

1.2 1.6 2 2.4 2.8

Suppressing Cladding Nonlinearity

TE01

Mode Nonlinearity*
÷

Cladding Nonlinearity

λ (µm)

Will be dominated by
nonlinearity of air

~10,000 times weaker
than in silica fiber

(including factor of 10 in area)

* “nonlinearity” = ∆β(1) / P = γ



Acircularity & Perturbation Theory

ε1

ε2

∆ε = ε1 – ε2

∆ε = ε2 – ε1

… just plug ∆ε’s into
perturbation formulas?

FAILS for high index contrast!

beware field discontinuity…
fortunately, a simple correction exists [ S. G. Johnson et al.,

PRE 65, 066611 (2002) ]

(or any shifting-boundary problem)



Acircularity & Perturbation Theory

ε1

ε2

∆ε = ε1 – ε2

∆ε = ε2 – ε1

[ S. G. Johnson et al.,
PRE 65, 066611 (2002) ]

(or any shifting-boundary problem)

∆

∆ ∆ ∆

ω
ω

ε
ε

ε
( )

||
1

2 2

22

1

= −

−



⊥∫

∫

h DE

E
surf.

∆h
(continuous field components)



Loss from Roughness/Disorder

imperfection acts like a volume current
r r
J E~ ∆ε 0

volume-current method
or Green’s functions with first Born approximation



Loss from Roughness/Disorder

imperfection acts like a volume current
r r
J E~ ∆ε 0

r r r
J E D~ ||∆ ∆ε ε ε− −

⊥
1

For surface roughness,
including field discontinuities:



Loss from Roughness/Disorder

uncorrelated disorder adds incoherently

So, compute power P radiated by one localized source J,
and loss rate ~ P * (mean disorder strength)



Conventional waveguide

radiation

re
fl

ec
ti

on
Effect of an Incomplete Gap

…with Si/SiO2 Bragg mirrors (1D gap)
50% lower losses (in dB)

same reflection

some radiation blocked

sa
m

e 
re

fl
ec

ti
on

(matching modal area)

on uncorrelated surface roughness loss



Considerations for Roughness Loss

• Band gap can suppress some radiation
— typically by at most ~ 1/2, depending on crystal

• Loss ~ ∆ε2 ~ 1000 times larger than for silica

• Loss ~ fraction of |E|2 in solid material
— factor of ~ 1/5 for 7-hole PCF
— ~ 10-5 for large-core Bragg-fiber design

• Hardest part is to get reliable statistics for disorder.



Using perturbations to design
big effects



Perturbation Theory and Dispersion

ω

β

when two distinct modes cross & interact,
unusual dispersion is produced

no interaction/coupling

mode 1

mode 2



Perturbation Theory and Dispersion

ω

β

when two distinct modes cross & interact,
unusual dispersion is produced

coupling: anti-crossing

mode 1

mode 2



Two Localized Modes
= Very Strong Dispersion

ω

β

core mode

localized
cladding–defect mode

weak coupling
= rapid slope change

= high dispersion
(> 500,000 ps/nm-km

+ dispersion-slope matching)

[ T. Engeness et al., Opt. Express 11, 1175 (2003) ]



(Different-Symmetry) Slow-light Modes
= Anomalous Dispersion

ω

β

[ M. Ibanescu et al., Phys. Rev. Lett. 92, 063903 (2004) ]

β=0

slow-light
band edges

at β=0 β=0 point has additional symmetry:
modes can be purely TE/TM polarized

TM

TE

— force different symmetry modes together



(Different-Symmetry) Slow-light Modes
= Anomalous Dispersion

[ M. Ibanescu et al., Phys. Rev. Lett. 92, 063903 (2004) ]

ultra-flat (ω4)
backward wave slow light non-zero

velocity



(Different-Symmetry) Slow-light Modes
= Anomalous Dispersion

[ M. Ibanescu et al., Phys. Rev. Lett. 92, 063903 (2004) ]

Uses gap at β=0:

perfect metal [1960]

or Bragg fiber

or high-index PCF 
(n > 2.5)



Further Reading

Reviews:

• J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:
Molding the Flow of Light (Princeton Univ. Press, 1995).

• P. Russell, “Photonic-crystal fibers,” Science 299, 358 (2003).

This Presentation, Free Software, Other Material:

http://ab-initio.mit.edu/photons/tutorial


