
BNF Syntax of the FTM Programming Language

Copyright (C) 1996-2003 by The Fortran Company. All rights reserved.

F is maintained by The Fortran Company. If you are interested in supplying F tools, software, or
related products, contact info@fortran.com.

Permission to use, copy, modify, and distribute this document is freely granted, provided that this
notice is preserved.

This is a working draft and is subject to change

Version: 2003 April 22

NOTES

An F program is interpreted in the same way as a Fortran 95 program.

An F program is subject to all of the appropriate syntax constraints of Fortran 95, plus those listed
here.

Additional source form rule:

• There is no ";" delimiter used to separate statements on a line.

The character data type has only default kind. There is no way to specify a kind parameter for
character data.

In an OPEN statement the status= keyword is required and shall not be "UNKNOWN".

In an OPEN statement the action= keyword is required. If status is SCRATCH action must be
READWRITE. If status is NEW or REPLACE action must not be READ.

In an OPEN statement for sequential access with status OLD the POSITION= keyword is required.
The position must be REWIND or APPEND.

If a unit is connected to a file, it must be closed before a subsequent OPEN of the unit. There is no
reopen of a connected file.

The F programming language does not directly support the concept of carriage control. This is a
file/OS/output-device characteristic. Files intended to be "printed" on certain devices will have to be
written in a certain way.

No characters, other than blanks, shall appear after the final ")" of a format.

The edit descriptors ES, EN, TL, TR, SS, and SP shall not have embedded blanks.

Statement keywords, etc., are usually printed in upper case to distinguish them from the surrounding
text.

When a name is used in an F program, the case of the letters shall match that of the name when it is
declared or defined.

Certain processors may produce an E (or D or d) on output of real numbers and may also accept that
form for input. This is provided for compatibility with existing data files produced by nonF
programs.

Character values returned from an INQUIRE statement will be in upper case.

R201 program
 is program-unit
 [program-unit] ...

R202 program-unit
 is main-program
 or module

R1101 main-program
 is program-stmt
 [use-stmt] ...
 [specification-part]
 [execution-part]
 [subprogram-part]
 end-program-stmt

R204 specification-part
 is [declaration-construct] ...

R207 declaration-construct
 is interface-block
 or derived-type-def
 or type-declaration-stmt
 or intrinsic-stmt
 or access-stmt
 or optional-stmt

Constraint: An access-stmt shall not appear
in a main-program or the subprogram-part of a module.

R208 execution-part
 is [executable-construct] ...

R210 subprogram-part
 is CONTAINS
 subprogram
 [subprogram] ...

R211 subprogram
 is function-subprogram
 or subroutine-subprogram

R215 executable-construct
 is action-stmt
 or case-construct
 or do-construct

 or if-construct
 or where-construct
 or forall-construct

R216 action-stmt
 is allocate-stmt
 or assignment-stmt
 or backspace-stmt
 or call-stmt
 or close-stmt
 or continue-stmt
 or cycle-stmt
 or deallocate-stmt
 or endfile-stmt
 or exit-stmt
 or forall-stmt
 or goto-stmt
 or if-stmt
 or inquire-stmt
 or open-stmt
 or pointer-assignment-stmt
 or print-stmt
 or read-stmt
 or return-stmt
 or rewind-stmt
 or stop-stmt
 or where-stmt
 or write-stmt

Constraint: The target of a go to statement shall
be a continue statement that occurs after the go to
statement in the same scoping unit.

R301 character
 is alphanumeric-character
 or special-character

R302 alphanumeric-character
 is letter
 or digit
 or underscore

R303 underscore
 is _

R304 name
 is letter [alphanumeric-character] ...

Constraint: The maximum length of a name is 31 characters.

Constraint: All variables must be declared in type statements or
accessed by use or host association.

Constraint: Entity names, type names, defined operator names, argument
keywords for non-intrinsic procedures, and non-intrinsic procedure names may
be in mixed upper and lower case; however, all occurrences of the names shall
use the same case convention.

Constraint: All non-intrinsic procedures shall have an explicit interface.

Constraint: Blank characters shall not appear within any name, keyword,

operator, delimiter, or literal-constant except that one or more blank
characters may appear before or after the real-part or imag-part of a
complex-literal-constant and one or more blanks may be used in keywords as
follows:

 keyword alternate usage
 ====================================
 elseif else if
 enddo end do
 endfile end file
 endfunction end function
 endif end if
 endinterface end interface
 endmodule end module
 endprogram end program
 endselect end select
 endsubroutine end subroutine
 endtype end type
 endwhere end where
 inout in out
 selectcase select case

Constraint: No name, keyword, delimiter, or operator, shall be split
onto more than one line via statement continuation. Keywords shall not be
continued at the optional blank.

Constraint: No line shall begin with the & character.

R305 constant
 is literal-constant
 or named-constant

R306 literal-constant
 is int-literal-constant
 or real-literal-constant
 or complex-literal-constant
 or logical-literal-constant
 or char-literal-constant

R307 named-constant
 is name

R308 int-constant
 is constant

Constraint: int-constant shall be of type integer.

R309 char-constant
 is constant

Constraint: char-constant shall be of type character.

R310 intrinsic-operator
 is power-op
 or mult-op
 or add-op
 or concat-op
 or rel-op
 or not-op
 or and-op
 or or-op

 or equiv-op

R311 defined-operator
 is defined-unary-op
 or defined-binary-op
 or extended-intrinsic-op

R312 extended-intrinsic-op
 is intrinsic-operator

Constraint: A defined-unary-op and a defined-binary-op shall not
contain more than 31 letters and shall not be the same as any
intrinsic-operator or logical-literal-constant.

R313 label
 is digit [digit [digit [digit [digit]]]]

Constraint: At least one digit in a label shall be nonzero.

Constraint: The only statement that may have a label is
the continue-stmt.

R401 signed-digit-string
 is [sign] digit-string

R402 digit-string
 is digit [digit] ...

R403 signed-int-literal-constant
 is [sign] int-literal-constant

R404 int-literal-constant
 is digit-string [_ kind-param]

R405 kind-param
 is scalar-int-constant-name

R406 sign
 is +
 or -

Constraint: The value of kind-param shall be nonnegative.

Constraint: The value of kind-param shall specify a representation
method that exists on the processor.

R412 signed-real-literal-constant
 is [sign] real-literal-constant

R413 real-literal-constant
 is significand [exponent-letter exponent] [_ kind-param]

R414 significand
 is digit-string . digit-string

R415 exponent-letter
 is E

R416 exponent
 is signed-digit-string

Constraint: The value of kind-param shall specify an approximation
method that exists on the processor.

R417 complex-literal-constant
 is (real-part , imag-part)

R418 real-part
 is signed-real-literal-constant

R419 imag-part
 is signed-real-literal-constant

Constraint: Both real-part and imag-part must either have no kind-param
or have the same kind-param.

R420 char-literal-constant
 is " [rep-char] ... "

Note: Within a char-literal-constant the quote delimiter may be doubled
to indicate a single instance of the delimiter.

R421 logical-literal-constant
 is .TRUE. [_ kind-param]
 or .FALSE. [_ kind-param]

Constraint: The value of kind-param shall specify a representation
method that exists on the processor.

Constraint: No integer, real, logical, or character literal constant,
or real-part or imag-part shall be split onto more than one line via
statement continuation.

R422 derived-type-def
 is derived-type-stmt
 [private-stmt]
 component-def-stmt
 [component-def-stmt] ...
 end-type-stmt

R423 derived-type-stmt
 is TYPE [, access-spec] :: type-name

Constraint: The access-spec shall be present if the derived-type-stmt
is in a module and shall not be present if it is in a main-program.

Constraint: A derived type type-name shall not be the same as the name
of any intrinsic type defined in the Fortran standard nor the same as any
other accessible derived type type-name.

R424 private-stmt
 is PRIVATE

R425 component-def-stmt
 is type-spec [, component-attr-spec-list] :: component-decl-list

Constraint: The character length specified by the char-length in a
type-spec shall be a constant specification expression.

R426 component-attr-spec
 is POINTER
 or DIMENSION (component-array-spec)

Note: F implementations allow ALLOCATABLE as an extension.

R427 component-array-spec
 is explicit-shape-spec-list
 or deferred-shape-spec-list

Constraint: If a component of a derived-type is of a type that is
private, either the derived type definition shall contain the PRIVATE
statement or the derived type shall be private.

Constraint: No component-attr-spec shall appear more than once in a
given component-def-stmt.

Constraint: If the POINTER attribute is not specified for a component,
a type-spec in the component-def-stmt shall specify an intrinsic type or a
previously defined derived type.

Constraint: If the POINTER attribute is specified for a component, a
type-spec in the component-def-stmt shall specify an intrinsic type or any
accessible derived type including the type being defined.

Constraint: If the POINTER attribute is specified, each
component-array-spec shall be a deferred-shape-spec-list.

Constraint: If the POINTER attribute is not specified, each
component-array-spec shall be an explicit-shape-spec-list.

Constraint: Each bound in the explicit-shape-spec shall be a constant
specification expression.

R428 component-decl
 is component-name [initialization]

R430 end-type-stmt
 is END TYPE type-name

Constraint: The type-name shall be the same as that in the
corresponding derived-type-stmt.

R431 structure-constructor
 is type-name (expr-list)

R432 array-constructor
 is (/ ac-value-list /)

R433 ac-value
 is expr
 or ac-implied-do

R434 ac-implied-do
 is (ac-value-list , implied-do-control)

R435 implied-do-control
 is do-variable = scalar-int-expr , scalar-int-expr &
 [, scalar-int-expr]

Constraint: Each ac-value expression in the array-constructor shall
have the same type and kind type parameter.

R501 type-declaration-stmt

 is type-spec [, attr-spec] ... :: entity-decl-list

R502 type-spec
 is INTEGER [kind-selector]
 or REAL [kind-selector]
 or CHARACTER char-selector
 or COMPLEX [kind-selector]
 or LOGICAL [kind-selector]
 or TYPE (type-name)

R503 attr-spec
 is PARAMETER
 or access-spec
 or ALLOCATABLE
 or DIMENSION (array-spec)
 or INTENT (intent-spec)
 or OPTIONAL
 or POINTER
 or SAVE
 or TARGET

R504 entity-decl
 is object-name [initialization]

R505 initialization
 is = initialization-expr
 or => NULL()

R506 kind-selector
 is (KIND = scalar-int-constant-name)

Constraint: The same attr-spec shall not appear more than once in a
given type-declaration-stmt.

Constraint: The ALLOCATABLE attribute may be used only when declaring
an array that is not a dummy argument or a function result.
[Note: F extends this to allow dummy arguments and function results.]

Constraint: An array declared with a POINTER or an ALLOCATABLE
attribute shall be specified with an array-spec that is a
deferred-shape-spec-list.

Constraint: An array-spec for an object-name that is a function result
that does not have the POINTER attribute shall be an explicit-shape-spec-list.

Constraint: If the POINTER attribute is specified, neither the TARGET
nor INTENT attribute shall be specified.

Constraint: If the TARGET attribute is specified, neither the POINTER
nor PARAMETER attribute shall be specified.

Constraint: The PARAMETER attribute shall not be specified for dummy
arguments, pointers, allocatable arrays, or functions results.

Constraint: The INTENT and OPTIONAL attributes may be specified only
for dummy arguments. INTENT must be specified for every dummy argument
except a procedure or one with the POINTER attribute.

Constraint: An entity shall not have the PUBLIC attribute if its type
has the PRIVATE attribute.

Constraint: The SAVE attribute shall not be specified for an object
that is a dummy argument, a procedure, a function result, an automatic data
object, or an object with the PARAMETER attribute.

Constraint: An array shall not have both the ALLOCATABLE attribute and
the POINTER attribute.

Constraint: Initialization shall appear if the statement contains a
PARAMETER attribute.

Constraint: Initialization shall not appear if object-name is a dummy
argument, a function result, an allocatable array, or an automatic object.

Constraint: The value of scalar-int-constant-name in kind-selector
shall be nonnegative and shall specify a representation method that exists
on the processor.

R507 char-selector
 is (LEN = char-len-param-value)

R510 char-len-param-value
 is specification-expr
 or *

Constraint: The char-len-param-value must be * for a dummy argument
or a parameter.

Constraint: The char-len-param-value may be * only for a dummy argument
or a parameter.

R511 access-spec
 is PUBLIC
 or PRIVATE

Constraint: An access-spec shall appear only in the specification-part
of a module.

Constraint: An access-spec shall appear on every
type-declaration-statement in a module.

R512 intent-spec
 is IN
 or OUT
 or INOUT

Constraint: The INTENT attribute shall not be specified for a dummy
argument that is a dummy procedure or a dummy pointer.

Constraint: A dummy argument with the INTENT(IN) attribute, or a
subobject of such a dummy argument, shall not appear as

(1) The variable of an assignment-stmt,

(2) The pointer-object of a pointer-assignment-stmt,

(3) A DO variable (no dummy argument may be a DO variable),

(4) An input-item in a read-stmt,

(5) An internal-file-unit in a write-stmt,

(6) An IOSTAT= or SIZE= specifier in an input/output statement,

(7) A definable variable in an INQUIRE statement,

(9) A stat-variable or allocate-object in an allocate-stmt or
a deallocate-stmt, or

(10) An actual argument in a reference to a procedure when the
associated dummy argument has the INTENT(OUT) or INTENT(INOUT) attribute.

R513 array-spec
 is explicit-shape-spec-list
 or assumed-shape-spec-list
 or deferred-shape-spec-list

Constraint: The maximum rank is seven.

R514 explicit-shape-spec
 is [lower-bound :] upper-bound

R515 lower-bound
 is specification-expr

R516 upper-bound
 is specification-expr

Constraint: An explicit-shape array whose bounds depend on the values
of nonconstant expressions shall be a function result, or an automatic array
of a procedure.

R517 assumed-shape-spec
 is [lower-bound] :

Constraint: All dummy argument arrays shall be assumed-shape-arrays.

Constraint: Only dummy argument arrays shall be assumed-shape arrays.

R518 deferred-shape-spec
 is :

R521 optional-stmt
 is OPTIONAL :: dummy-arg-name-list

Constraint: Each optional-stmt shall occur only in the
specification-part of a subprogram or an interface body (12.3.2.1).

Constraint: Each dummy-arg-name shall be the name of a procedure
that is a dummy argument of the procedure in which the statement appears.

R522 access-stmt
 is access-spec :: access-id-list

R523 access-id
 is procedure-name
 or generic-spec

Constraint: Each procedure-name shall be the name of a procedure
defined in the module.

Constraint: Each generic-spec or procedure defined in a module
shall appear in an access-stmt in the module.

Constraint: A module procedure that has a dummy argument or function
result of a type that has PRIVATE accessibility shall have PRIVATE
accessibility and shall not have a generic identifier that has PUBLIC
accessibility.

R601 variable
 is scalar-variable-name
 or array-variable-name
 or subobject

Constraint: array-variable-name shall be the name of a data object that
is an array.

Constraint: array-variable-name shall not have the PARAMETER attribute.

Constraint: scalar-variable-name shall not have the PARAMETER attribute.

Constraint: subobject shall not be a subobject designator (for example,
a substring) whose parent is a constant.

R602 subobject
 is array-element
 or array-section
 or structure-component
 or substring

R603 logical-variable
 is variable

Constraint: logical-variable shall be of type logical.

R604 default-logical-variable
 is variable

Constraint: default-logical-variable shall be of type default logical.

R605 char-variable
 is variable

Constraint: char-variable shall be of type character.

R607 int-variable
 is variable

Constraint: int-variable shall be of type integer.

R608 default-int-variable
 is variable

Constraint: default-int-variable shall be of type default integer.

R609 substring
 is parent-string (substring-range)

R610 parent-string
 is scalar-variable-name
 or array-element
 or scalar-structure-component

R611 substring-range

 is [scalar-int-expr] : [scalar-int-expr]

Constraint: parent-string shall be of type character.

R612 data-ref
 is part-ref [% part-ref] ...

R613 part-ref
 is part-name [(section-subscript-list)]

Constraint: In a data-ref, each part-name except the rightmost shall be
of derived type.

Constraint: In a data-ref, each part-name except the leftmost shall be
the name of a component of the derived type definition of the type of the
preceding part-name.

Constraint: In a part-ref containing a section-subscript-list, the
number of section-subscripts shall equal the rank of part-name.

Constraint: In a data-ref, there shall not be more than one part-ref
with nonzero rank. A part-name to the right of a part-ref with nonzero rank
shall not have the POINTER attribute.

R614 structure-component
 is data-ref

Constraint: In a structure-component, there shall be more than one
part-ref and the rightmost part-ref shall be of the form part-name.

R615 array-element
 is data-ref

Constraint: In an array-element, every part-ref shall have rank zero
and the last part-ref shall contain a subscript-list.

R616 array-section
 is data-ref [(substring-range)]

Constraint: In an array-section, exactly one part-ref shall have
nonzero rank, and either the final part-ref shall have a
section-subscript-list with nonzero rank or another part-ref shall have
nonzero rank.

Constraint: In an array-section with a substring-range, the rightmost
part-name shall be of type character.

R617 subscript
 is scalar-int-expr

R618 section-subscript
 is subscript
 or subscript-triplet
 or vector-subscript

R619 subscript-triplet
 is [subscript] : [subscript] [: stride]

R620 stride
 is scalar-int-expr

R621 vector-subscript
 is int-expr

Constraint: A vector-subscript shall be an integer array expression of
rank one.

R622 allocate-stmt
 is ALLOCATE (allocation-list [, STAT = stat-variable])

R623 stat-variable
 is scalar-int-variable

R624 allocation
 is allocate-object [(allocate-shape-spec-list)]

R625 allocate-object
 is variable-name
 or structure-component

R626 allocate-shape-spec
 is [allocate-lower-bound :] allocate-upper-bound

R627 allocate-lower-bound
 is scalar-int-expr

R628 allocate-upper-bound
 is scalar-int-expr

Constraint: Each allocate-object shall be a pointer or an allocatable
array.

Constraint: The number of allocate-shape-specs in an
allocate-shape-spec-list shall be the same as the rank of the pointer or
allocatable array.

R630 pointer-object
 is variable-name
 or structure-component

Constraint: Each pointer-object shall have the POINTER attribute.

R631 deallocate-stmt
 is DEALLOCATE (allocate-object-list [, STAT = stat-variable])

Constraint: Each allocate-object shall be a pointer or allocatable array.

R701 primary
 is constant
 or constant-subobject
 or variable
 or array-constructor
 or structure-constructor
 or function-reference
 or (expr)

R702 constant-subobject
 is subobject

Constraint: subobject shall be a subobject designator whose parent is a
named-constant.

R703 level-1-expr
 is [defined-unary-op] primary

R704 defined-unary-op
 is . letter [letter] ...

Constraint: A defined-unary-op shall not contain more than 31 letters.

R705 mult-operand
 is level-1-expr [power-op mult-operand]

R706 add-operand
 is [add-operand mult-op] mult-operand

R707 level-2-expr
 is [[level-2-expr] add-op] add-operand

R708 power-op
 is **

R709 mult-op
 is *
 or /

R710 add-op
 is +
 or -

R711 level-3-expr
 is [level-3-expr concat-op] level-2-expr

R712 concat-op
 is //

R713 level-4-expr
 is [level-3-expr rel-op] level-3-expr

R714 rel-op
 is ==
 or /=
 or <
 or <=
 or >
 or >=

R715 and-operand
 is [not-op] level-4-expr

R716 or-operand
 is [or-operand and-op] and-operand

R717 equiv-operand
 is [equiv-operand or-op] or-operand

R718 level-5-expr
 is [level-5-expr equiv-op] equiv-operand

R719 not-op
 is .NOT.

R720 and-op

 is .AND.

R721 or-op
 is .OR.

R722 equiv-op
 is .EQV.
 or .NEQV.

R723 expr
 is [expr defined-binary-op] level-5-expr

R724 defined-binary-op
 is . letter [letter]

Constraint: A defined-binary-op shall not contain more than 31 letters.

R725 logical-expr
 is expr

Constraint: logical-expr shall be of type logical.

R726 char-expr
 is expr

Constraint: char-expr shall of be type character.

R728 int-expr
 is expr

Constraint: int-expr shall be of type integer.

R729 numeric-expr
 is expr

Constraint: numeric-expr shall be of type integer, real or complex.

R730 initialization-expr
 is expr

Constraint: initialization-expr shall be an initialization expression.

R731 char-initialization-expr
 is char-expr

Constraint: char-initialization-expr shall be an initialization expression.

R732 int-initialization-expr
 is int-expr

Constraint: int-initialization-expr shall be an initialization expression.

R733 logical-initialization-expr
 is logical-expr

Constraint: logical-initialization-expr shall be an initialization
expression.

R734 specification-expr
 is scalar-int-expr

Constraint: The scalar-int-expr shall be a restricted expression.

R735 assignment-stmt
 is variable = expr

R736 pointer-assignment-stmt
 is pointer-object => target

R737 target
 is variable
 or expr

Constraint: The pointer-object shall have the POINTER attribute.

Constraint: The variable shall have the TARGET attribute or be a
subobject of an object with the TARGET attribute, or it shall have the
POINTER attribute.

Constraint: The target shall be of the same type, kind type parameters,
and rank as the pointer.

Constraint: The target shall not be an array with vector section subscripts

Constraint: The expr shall deliver a pointer result.

R738 where-stmt
 is WHERE (mask-expr) where-assignment-stmt

R739 where-construct
 is where-construct-stmt
 [where-body-construct] ...
 [masked-elsewhere-stmt]
 [where-body-construct] ...
 [elsewhere-stmt]
 [where-body-construct] ...
 end-where-stmt

R740 where-construct-stmt
 is WHERE (mask-expr)

R741 where-body-construct
 is where-assignment-stmt
 or where-stmt
 or where-construct

R742 where-assignment-stmt
 is assignment-stmt

R743 mask-expr
 is logical-expr

R744 masked-elsewhere-stmt
 is ELSEWHERE (mask-expr)

R745 elsewhere-stmt
 is ELSEWHERE

R746 end-where-stmt
 is ENDWHERE

Constraint: In each where-assignment-stmt, the mask-expr and the

variable being defined must be arrays of the same shape.

Constraint: A where-assignment-stmt that is a defined assignment
shall be elemental.

R747 forall-construct
 is forall-construct-stmt
 [forall-body-construct] ...
 end-forall-stmt

R748 forall-construct-stmt
 is FORALL (forall-triplet-spec-list [, scalar-mask-expr])

R750 forall-triplet-spec
 is index-name = subscript : subscript [: stride]

R751 forall-body-construct
 is forall-assignment-stmt
 or where-construct
 or where-stmt
 or forall-construct
 or forall-stmt

R752 forall-assignment-stmt
 is assignment-stmt
 or pointer-assignment-stmt

R753 end-forall-stmt
 is END FORALL

Constraint: The scalar-mask-expr shall be scalar and of type logical.

Constraint: Any procedure referenced in the scalar-mask-expr,
including one referenced by a defined operation, shall be pure.

Constraint: An index-name shall be a named variable of type integer,
shall not be a dummy argument, shall not have the POINTER attribute, shall
not be initialized, shall not have the save attribute, shall not be accessed
by use or host association, and shall be used in the scoping unit only as an
index-name.

Constraint: A subscript or stride in a forall-triplet-spec shall
not contain a reference to any index-name of the forall-triplet-spec
in which it appears.

Constraint: A statement in a forall-body-construct shall not define
an index-name of the forall-construct.

Constraint: Any procedure referenced in a forall-body-construct,
including one referenced by a defined operation or assignment, shall
be pure.

R754 forall-stmt
 is FORALL (forall-triplet-spec-list [, scalar-mask-expr]) &
 forall-assignment-stmt

R801 block
 is [executable-construct] ...

R802 if-construct
 is if-then-stmt

 block
 [else-if-stmt
 block] ...
 [else-stmt
 block]
 end-if-stmt

R803 if-then-stmt
 is IF (scalar-logical-expr) THEN

R804 else-if-stmt
 is ELSEIF (scalar-logical-expr) THEN

R805 else-stmt
 is ELSE

R806 end-if-stmt
 is ENDIF

R807 if-stmt
 is IF (scalar-logical-expr) action-stmt

Constraint: The action-stmt shall not be an if-stmt,
end-program-stmt, end-function-stmt, or end-subroutine-stmt.

R808 case-construct
 is select-case-stmt
 [case-stmt
 block] ...
 [CASE DEFAULT
 block]
 end-select-stmt

R809 select-case-stmt
 is SELECT CASE (case-expr)

R810 case-stmt
 is CASE case-selector

R811 end-select-stmt
 is END SELECT

R812 case-expr
 is scalar-int-expr
 or scalar-char-expr

R813 case-selector
 is (case-value-range-list)

R814 case-value-range
 is case-value
 or case-value :
 or : case-value
 or case-value : case-value

R815 case-value
 is scalar-int-initialization-expr
 or scalar-char-initialization-expr

Constraint: For a given case-construct, each case-value shall be of the
same type as case-expr. For character type, length differences are allowed.

Constraint: For a given case-construct, the case-value-ranges shall not
overlap; that is, there shall be no possible value of the case-expr that
matches more than one case-value-range.

R816 do-construct
 is block-do-construct

R817 block-do-construct
 is do-stmt
 do-block
 end-do

R818 do-stmt
 is [do-construct-name :] DO [loop-control]

Constraint: The do-construct-name shall not be the same as the name of
any accessible entity.

Constraint: The same do-construct-name shall not be used on more than
one do-stmt in a scoping unit.

R821 loop-control
 is do-variable = scalar-int-expr, scalar-int-expr &
 [, scalar-int-expr]

R822 do-variable
 is scalar-int-variable

Constraint: A do-variable shall be a named variable of type integer,
shall not be a dummy argument, shall not have the POINTER attribute, shall
not be initialized, shall not have the SAVE attribute, shall not be accessed
by use or host association, and shall be used in the scoping unit only as
a do-variable.

R823 do-block
 is block

R824 end-do
 is ENDDO [do-construct-name]

Constraint: If the do-stmt is identified by a do-construct-name, the
corresponding end-do shall specify the same do-construct-name. If the
do-stmt is not identified by a do-construct-name, the corresponding end-do
shall not specify a do-construct-name.

R834 cycle-stmt
 is CYCLE [do-construct-name]

Constraint: If a cycle-stmt refers to a do-construct-name, it shall be
within the range of that do-construct; otherwise, it shall be within the
range of at least one do-construct.

R835 exit-stmt
 is EXIT [do-construct-name]

Constraint: If an exit-stmt refers to a do-construct-name, it shall be
within the range of that do-construct; otherwise, it shall be within the
range of at least one do-construct.

R836 goto-stmt

 is GO TO label

Constraint: The label shall be the statement label of a continue-stmt
that appears after the goto-stmt in the same scoping unit as the goto-stmt.

R839 continue-stmt
 is label CONTINUE

R840 stop-stmt
 is STOP

R901 io-unit
 is external-file-unit
 or *
 or internal-file-unit

R902 external-file-unit
 is scalar-int-expr

R903 internal-file-unit
 is char-variable

Constraint: The char-variable shall not be an array section with a
vector subscript.

R904 open-stmt
 is OPEN (connect-spec-list)

R905 connect-spec
 is UNIT = external-file-unit
 or IOSTAT = scalar-default-int-variable
 or FILE = file-name-expr
 or STATUS = scalar-char-expr
 or ACCESS = scalar-char-expr
 or FORM = scalar-char-expr
 or RECL = scalar-int-expr
 or POSITION = scalar-char-expr
 or ACTION = scalar-char-expr

R906 file-name-expr
 is scalar-char-expr

Constraint: A connect-spec-list shall contain exactly one UNIT =
io-unit, exactly one STATUS= scalar-char-expr, and exactly one ACTION =
scalar-char-expr and may contain at most one of each of the other specifiers.

R907 close-stmt
 is CLOSE (close-spec-list)

R908 close-spec
 is UNIT = external-file-unit
 or IOSTAT = scalar-default-int-variable
 or STATUS = scalar-char-expr

Constraint: A close-spec-list shall contain exactly one UNIT = io-unit
and may contain at most one of each of the other specifiers.

R909 read-stmt
 is READ (io-control-spec-list) [input-item-list]
 or READ format [, input-item-list]

R910 write-stmt
 is WRITE (io-control-spec-list) [output-item-list]

R911 print-stmt
 is PRINT format [, output-item-list]

R912 io-control-spec
 is UNIT = io-unit
 or FMT = format
 or REC = scalar-int-expr
 or IOSTAT = scalar-default-int-variable
 or ADVANCE = scalar-char-expr
 or SIZE = scalar-default-int-variable

Constraint: An io-control-spec-list shall contain exactly one UNIT =
io-unit and may contain at most one of each of the other specifiers.

Constraint: A SIZE= specifier shall not appear in a write-stmt.

Constraint: If the unit specifier specifies an internal file, the
io-control-spec-list shall not contain a REC= specifier.

Constraint: If the REC= specifier is present, the format, if any, shall
not be an asterisk specifying list-directed input/output.

Constraint: An ADVANCE= specifier may be present only in a formatted
sequential input/output statement with explicit format specification whose
control information list does not contain an internal file unit specifier.

Constraint: If a SIZE= specifier is present, an ADVANCE= specifier also
shall appear.

R913 format
 is char-expr
 or *

R914 input-item
 is variable
 or (variable-list , implied-do-control)

R915 output-item
 is expr
 or (expr-list , implied-do-control)

R919 backspace-stmt
 is BACKSPACE (position-spec-list)

R920 endfile-stmt
 is ENDFILE (position-spec-list)

R921 rewind-stmt
 is REWIND (position-spec-list)

R922 position-spec
 is UNIT = external-file-unit
 or IOSTAT = scalar-default-int-variable

Constraint: A position-spec-list shall contain exactly one UNIT =
external-file-unit, and may contain at most one IOSTAT specifier.

R923 inquire-stmt

 is INQUIRE (inquire-spec-list)
 or INQUIRE (IOLENGTH = scalar-default-int-variable)
output-item-list

R924 inquire-spec
 is UNIT = external-file-unit
 or FILE = file-name-expr
 or IOSTAT = scalar-default-int-variable
 or EXIST = scalar-default-logical-variable
 or OPENED = scalar-default-logical-variable
 or NUMBER = scalar-default-int-variable
 or NAMED = scalar-default-logical-variable
 or NAME = scalar-char-variable
 or ACCESS = scalar-char-variable
 or SEQUENTIAL = scalar-char-variable
 or DIRECT = scalar-char-variable
 or FORM = scalar-char-variable
 or FORMATTED = scalar-char-variable
 or UNFORMATTED = scalar-char-variable
 or RECL = scalar-default-int-variable
 or NEXTREC = scalar-default-int-variable
 or POSITION = scalar-char-variable
 or ACTION = scalar-char-variable
 or READ = scalar-char-variable
 or WRITE = scalar-char-variable
 or READWRITE = scalar-char-variable

Constraint: An inquire-spec-list shall contain one FILE= specifier or
one UNIT= specifier, but not both, and at most one of each of the other
specifiers.

R1002 format-specification
 is ([format-item-list])

R1003 format-item
 is [r] data-edit-desc
 or control-edit-desc
 or [r] (format-item-list)

R1004 r
 is int-literal-constant

Constraint: r shall be positive.

Constraint: r shall not have a kind parameter specified for it.

R1005 data-edit-desc
 is I w [. m]
 or F w . d
 or ES w . d [E e]
 or L w
 or A [w]

R1006 w
 is int-literal-constant

R1007 m
 is int-literal-constant

R1008 d
 is int-literal-constant

R1009 e
 is int-literal-constant

Constraint: w and e shall be nonnegative for I and F. w and e shall
be positive for the other edit descriptors.

Constraint: w, m, d, and e shall not have kind parameters specified for
them.

R1010 control-edit-desc
 is position-edit-desc
 or [r] /
 or :
 or sign-edit-desc

R1012 position-edit-desc
 is T n
 or TL n
 or TR n

R1013 n
 is int-literal-constant

Constraint: n shall be positive.

Constraint: n shall not have a kind parameter specified for it.

R1014 sign-edit-desc
 is S
 or SP
 or SS

R1101 main-program
 is program-stmt
 [use-stmt] ...
 [derived-type-def] ...
 [specification-part] ...
 [execution-part]
 end-program-stmt

R1102 program-stmt
 is PROGRAM program-name

R1103 end-program-stmt
 is END PROGRAM program-name

Constraint: In a main-program, the execution-part shall not contain a
RETURN statement.

Constraint: The program-name in the end-program-stmt shall be identical
to the program-name specified in the program-stmt.

Constraint: An automatic object shall not appear in the
specification-part of a main program.

R1104x module
 is public-module
 or private-module

R1104y public-module

 is module-stmt
 use-stmt
 [use-stmt] ...
 PUBLIC
 end-module-stmt

R1104 private-module
 is module-stmt
 [use-stmt] ...
 [PRIVATE]
 [specification-part]
 [subprogram-part]
 end-module-stmt

Constraint: A PRIVATE statement shall appear if any use-stmts appear.
A PRIVATE statement shall not appear if no use-stmts appear.

Constraint: Every function-subprogram or subroutine-subprogram in a
private-module shall be listed in an access-stmt.

R1105 module-stmt
 is MODULE module-name

R1106 end-module-stmt
 is END MODULE module-name

Constraint: The module-name is specified in the end-module-stmt shall
be identical to the module-name specified in the module-stmt.

Constraint: An automatic object shall not appear in the
specification-part of a module.

R1107 use-stmt
 is USE module-name [, rename-list]
 or USE module-name , ONLY : [only-list]

R1108 rename
 is local-name => use-name

R1109 only
 is generic-spec
 or only-use-name
 or only-rename

R1110 only-use-name
 is use-name

R1111 only-rename
 is local-name => use-name

Constraint: Each generic-spec shall be a public entity in the module.

Constraint: Each use-name shall be the name of a public entity in the
module.

Constraint: use-name shall not be the name of an intrinsic procedure.

Constraint: In a use-stmt a use-name shall appear only once.

Constraint: No two accessible entities may have the same local name.

R1201 interface-block
 is INTERFACE [generic-spec]
 [interface-specification] ...
 END INTERFACE [generic-spec]

R1202 interface-specification
 is interface-body
 or module-procedure-stmt

R1205 interface-body
 is function-stmt
 [specification-part]
 end-function-stmt
 or subroutine-stmt
 [specification-part]
 end-subroutine-stmt

Constraint: An interface-body shall specify the intents of all dummy
arguments except pointer and procedure arguments.

Constraint: Each procedure dummy argument shall appear in exactly one
interface body.

R1206 module-procedure-stmt
 is MODULE PROCEDURE procedure-name-list

R1207 generic-spec
 is generic-name
 or OPERATOR (defined-operator)
 or ASSIGNMENT (=)

Constraint: Every generic-spec in a private-module shall be listed in
an access-stmt.

Constraint: If generic-spec is also the name of an intrinsic procedure
the generic name shall appear in a previous intrinsic statement in the module.

Constraint: An external procedure shall not be used as an actual argument.

R1209 intrinsic-stmt
 is INTRINSIC :: intrinsic-procedure-name-list

Constraint: Each intrinsic-procedure-name shall refer to an
intrinsic procedure in the following list:

 abs
 acos
 adjustl
 adjustr
 aimag
 aint
 all
 allocated
 anint
 any
 asin
 associated
 atan
 atan2
 bit_size
 btest

 ceiling
 char
 cmplx
 conjg
 cos
 cosh
 count
 cpu_time
 cshift
 date_and_time
 digits
 dot_product
 eoshift
 epsilon
 exp
 exponent
 floor
 fraction
 huge
 iand
 ibclr
 ibits
 ibset
 ichar
 ieor
 index
 int
 ior
 ishft
 ishftc
 kind
 lbound
 len
 len_trim
 log
 log10
 logical
 matmul
 max
 maxexponent
 maxloc
 maxval
 merge
 min
 minexponent
 minloc
 minval
 modulo
 mvbits
 nearest
 nint
 not
 null
 pack
 precision
 present
 product
 radix
 random_number
 random_seed
 range

 real
 repeat
 reshape
 rrspacing
 scale
 scan
 selected_int_kind
 selected_real_kind
 set_exponent
 shape
 sign
 sin
 sinh
 size
 spacing
 spread
 sqrt
 sum
 system_clock
 tan
 tanh
 tiny
 transpose
 trim
 ubound
 unpack
 verify

Constraint: In a reference to any intrinsic function that has a kind
argument the corresponding actual argument must be a named constant.

R1210 function-reference
 is function-name ([actual-arg-spec-list])

R1211 call-stmt
 is CALL subroutine-name ([actual-arg-spec-list])

R1212 actual-arg-spec
 is [keyword =] actual-arg

R1213 keyword
 is dummy-arg-name

R1214 actual-arg
 is expr
 or variable
 or procedure-name

Constraint: The keyword = may be omitted from an actual-arg-spec only
if the keyword = has been omitted from each preceding actual-arg-spec in the
argument list.

Constraint: Each keyword shall be the name of a dummy argument of the
procedure.

Constraint: In a reference to a function, a procedure-name actual-arg
shall be the name of a function.

Constraint: A procedure-name actual-arg shall not be the name of an
intrinsic function or a generic-name.

R1216 function-subprogram
 is function-stmt
 [specification-part]
 [execution-part]
 end-function-stmt

R1217 function-stmt
 is [prefix] FUNCTION function-name
 ([dummy-arg-name-list]) RESULT (result-name)

Constraint: The function-name shall not appear in any specification
statement in the scoping unit of the function subprogram.

R1218 prefix
 is prefix-spec [prefix-spec]...

R1219 prefix-spec
 is RECURSIVE
 or PURE
 or ELEMENTAL

Constraint: A prefix shall contain at most one of each prefix-spec.

Constraint: If ELEMENTAL is present, RECURSIVE shall not be present.

R1220 end-function-stmt
 is END FUNCTION function-name

Constraint: result-name shall not be the same as function-name.

Constraint: The function-name in the end-function-stmt shall be
identical to the function-name specified in the function-stmt.

R1221 subroutine-subprogram
 is subroutine-stmt
 [specification-part]
 [execution-part]
 end-subroutine-stmt

R1222 subroutine-stmt
 is [prefix] SUBROUTINE subroutine-name ([dummy-arg-list])

R1223 dummy-arg
 is dummy-arg-name

R1224 end-subroutine-stmt
 is END SUBROUTINE subroutine-name

Constraint: The subroutine-name in the end-subroutine-stmt shall be
identical to the subroutine-name specified in the subroutine-stmt.

R1226 return-stmt
 is RETURN

Constraint: The return-stmt shall be in the scoping unit of a function
or subroutine subprogram.

R1227 contains-stmt
 is CONTAINS

Constraint: Every function-subprogram shall satisfy the constraints of a

pure function, whether or not the keyword PURE appears, except that a
function in which PURE does not appear my contain a PRINT statement.

The following constraints for Section 12 apply to the syntax rules defining
function subprograms (R1216-R1220) and pure subroutine subprograms (R1222-
R1224).

Constraint: The specification-part of a function shall specify that all
dummy arguments have INTENT(IN) except procedure arguments and arguments with
the POINTER attribute.

Constraint: The specification-part of a subroutine shall specify the
intents of all dummy arguments except procedure arguments and arguments with
the POINTER attribute.

Constraint: A local variable declared in the specification-part of a
function or pure subroutine shall not have the SAVE attribute.

Constraint: The specification-part of a function or pure subroutine
shall specify that all dummy arguments that are procedures are pure.

Constraint: If a procedure that is not an intrinsic procedure is used
in a context that requires it to be pure, its interface shall be explicit
in the scope of that use. The interface shall specify that the procedure
is pure.

Constraint: In a function or pure subroutine any variable that is
accessed by host or use association, is a dummy argument to a function, or
is a dummy argument with INTENT(IN) to a pure subroutine shall not be used
in the following contexts:

 (1) As the variable of an assignment-stmt;

 (2) As a DO variable or implied DO variable;

 (3) As an input-item in a read-stmt from an internal file;

 (4) As an internal-file unit in a write-stmt;

 (5) As an IOSTAT=specifier in an input or output statement with an
 internal file;

 (6) As the pointer-object of a pointer-assignment-stmt;

 (7) As the target of a pointer-assignment-stmt;

 (8) As the expr of an assignment-stmt in which the variable is of
 a derived type if the derived type has a pointer component at
 any level of component selection;

 (9) As an allocate-object or stat-variable in an allocate-stmt or
 deallocate-stmt; or

 (10) As an actual argument associated with a dummy argument with
 INTENT(OUT) or INTENT(IN OUT) or with the POINTER attribute.

Constraint: Any procedure referenced in a pure procedure,
including one referenced via a defined operation or assignment,
shall be pure.

Constraint: Any procedure referenced in a function,

including one referenced via a defined operation or assignment,
shall be a function or a pure procedure.

Constraint: A function or pure subroutine shall not contain a print-
stmt, open-stmt, close-stmt, backspace-stmt, end-file-stmt, rewind-stmt,
or inquire-stmt, except that a function not explicitly declared pure may
contain a print-stmt.

Constraint: A function or pure subroutine shall not contain a read-
stmt or write-stmt whose io-unit is an external-file-unit or *.

Constraint: A function or pure subroutine shall not contains a stop-
stmt.

The following constraints for Section 12 apply to the syntax rules defining
elemental procedures:

Constraint: All dummy arguments shall be scalar and shall not have
the POINTER attribute.

Constraint: For a function, the result shall be scalar and shall not
have the POINTER attribute.

Constraint: A dummy argument, or a subobject thereof, shall not
appear in a specification-expr except as the argument to one of the
intrinsic functions BIT_SIZE, KIND, LEN, or the numeric inquiry
functions.

Constraint: A dummy argument shall not be a procedure.

DRAFT DRAFT DRAFT

The Fortran Company
11155 E. Mountain Gate Place
Tucson, Arizona 85749 USA

+1-520-256-1455 ** 760-1397 (fax)
info@fortran.com

	BNF Syntax of the FTM Programming Language
	NOTES

