
445

�What we know is not much. What we do not know is immense. �

Pierre Simon De Laplace (1749-1827)

Chapter 11

Miscellaneous Numerical Methods

The following sections contain a very brief introduction into selected mis-

cellaneous topics and examples from some specialty areas of numerical methods

and analysis. The topics selected reßect upon current research of the time. We

give a very brief look at parallel computing and the message passing interface

language MPI. We take a passing glance at such areas as integral equations,

Bézier curves, and B-splines. These are some areas of numerical methods and

analysis that you might want to study in more depth. The material presented

is far from complete and should be viewed only as introductory examples which

are intended to serve as motivation for some readers to get more involved in the

subject areas.

Parallel Computer Systems

Imagine that you have a computer code to run and instead of a single com-

puter executing your computer program you had N (N > 1) computers hooked

up in parallel so that they all could communicate with each other and exchange

information. How would you make use of all this extra computing power? This

concept of a cluster of computers all doing calculations and communicating with

each other is called parallel computing. The concept of serial and parallel com-

puting is illustrated in the Þgure 10-1. We will be interested in situations where

computer codes can be broken up so that the computations can be divided

among the many computers available. The information calculated by the cluster

of parallel computers can then be shared to compute the desired output.

Assuming that all the computers in serial and parallel modes are the same,

then what kind of reduction in computational speed can one expect when using

parallel computing? It turns out that most computer codes run faster in a parallel

mode as compared to a serial mode. The reduction in computing time depends

upon the type and number of parallel computers, the kind of code being run and

how much message passing is done between computers within the cluster. For

446

example, if a computer code, which runs in a serial mode, is modiÞed to run in

a parallel mode, then you can deÞne the ratio

Parallel Computing Time
Serial Computing Time

= f,

where all computers are the same. In comparing the run times of the computer

codes, one will probably obtain an approximation like f = .3 + β/N < 1 for some

positive constant β. Don�t think that because you have N computers in parallel,

that f will be around 1/N as this is unrealistic. It is the message passing that

slows things down.

Not all computer codes are amenable for conversion to run under a parallel

structure. Sometimes it is wiser to spend your money on a good serial computer.

The kind of computer structure �best� for you will depend heavily upon the type

of applications you are using your computer system to solve.

Figure 10-1 Serial and parallel computing

Building a parallel computer system is not hard. There are many individuals

who collect old throw away computers and hook them up in a parallel structure.

Loosely speaking any collection of computers that is capable of running a parallel

code is called a Beowulf system or Beowulf cluster. (There are many deÞnitions of

a Beowulf system.) Hardware for connecting the computers comes in a variety

of forms from inexpensive, with slow communication between computers, to

expensive, with high speed communication between computers. The good news

is that most software for multi-computer structures is free. For example, the MPI

(Message-Passing Interface) libraries consist of Fortran, C and C++ language

macros, functions and subroutines that can be inserted into Fortran, C and C++

computer codes to convert them to run within a parallel structure. There are

447

many predeÞned constants built into the MPI libraries and one should note that

variable names, function names and subroutine names beginning with MPI are

protected and you should not change them. The following is a brief introduction

into MPI programming for the Fortran computer language as this seems to be

the language of choice of most individuals involved in scientiÞc computing. As

you begin your study of parallel computing you might think about how parallel

computer systems can be employed to speed up numerical procedures. You

will Þnd by examining the scientiÞc literature that parallel computing is being

applied to almost all areas of numerical computing and new ideas are welcomed.

I cannot tell you how to compile and execute your MPI parallel code. At this

time the commands for compiling and executing a parallel computer code varies

widely from one computer system to another. Compiling and running codes for a

parallel cluster also depends upon how environment variables are set up for your

computer system. I suggest you contact the administrator of the parallel system

you will be using to Þnd out the compile and execute commands associated with

your parallel computer system. On some unix systems the compile and run

commands have the form

f77 -o compiledprogram fortranprogram.f -lmpi

mpirun -np 6 compiledprogram

where −np is a mpirun processor ßag which is followed by an integer representing
the number of processor required to run the compiled code. The number 6 was

selected as an example.

The following Fortran programs contain a small selection of MPI commands

with a brief explanation as to their function. I will not go into detail about the

function of each MPI command, but will leave it to the reader to purchase a

text on MPI programming to Þnd out the details associated with all the message

passing between computers. The following computer codes are given strictly as

an introduction for the purpose of illustrating selected applications and usages

of parallel computing. The illustrative examples are just to get you started into

some of the introductory aspects of parallel computing by way of examples. I will

leave the complexities associated with parallel computing for additional study.

Example 11-1. (Getting started.)

The Þrst example program is a variation of the �HELLO WORLD� program found in

448

many introductory MPI manuals. In this Þrst example, and all of the subsequent

examples, the MPI library commands are written in bold face type so that you

take notice of them. In the Þrst example program it is assumed that it is compiled

to run on 6-processors. That is, a copy of the program is placed upon each of

the processors. What each processor does is controlled by the program.

The Þrst MPI command to recognize is the

INCLUDE �mpif.h�

command which is the Þrst directive to be placed at the beginning of the Fortran

code. The Þle mpif.h contains all the necessary information for compiling an

MPI Fortran code. At some place after this Þrst directive and before any MPI

commands are issued, there must occur the initialization statement

CALL MPI INIT(IERR)

where IERR is an error code with 0 denoting that there is no error. At the end

of the program, after all MPI library usage has ended, there must occur the

Þnalization statement

CALL MPI FINIALIZE(IERR).

This statement will clear up any MPI commands that have not been completed

during the execution of the program.

The commands

CALL MPI COMM RANK(MPI COMM WORLD, ID-PROC, IERR)

CALL MPI COMM SIZE(MPI COMM WORLD, NP, IERR)

determines the rank of each processor (ID-PROC) and number of processors (NP).

The parameter MPI COMM WORLD is a predeÞned integer variable which is as-

sociated with information about all the processors being used in the program

execution. It is referred to as a communicator argument. The parameter ID-PROC

is the identiÞcation number assigned to each processor at start up. For the Þrst

example program, we use 6 processors and so each processors is assigned its own

identiÞcation number of 0,1,2,3,4,5. Sometimes the processor 0 is referred to as

the master processor. The command MPI COMM SIZE returns the integer variable

NP denoting the number of processors being used.

Always remember that a copy of the code goes to each processor and that

each processor has its own identiÞcation number. The Þrst example code tests to

see if the correct number of processors are being used. It then has each processor

write out its identiÞcation number. Note that the order of the output depends

upon which processor Þnishes Þrst. The bottom half of the program has the

449

message �GOOD NIGHT WORLD� sent from the processor with identiÞcation rank 0

to the other processors and illustrates the use of the commands

CALL MPI_SEND(SENDDATA, ICOUNT, DATATYPE, IDESTIN, ITAG, ICOMM, IERR)
CALL MPI_RECV(RECVDATA,ICOUNT, DATATYPE, ISOURCE, ITAG, ICOMM, STATUS, IERR)

used to send and receive information. The parameters SENDDATA, RECVDATA rep-

resent the data being sent or received. The parameters ICOUNT and DATATYPE

are used for system identiÞcation of the data sent and received. The MPI data

types are
MPI_INTEGER MPI_COMPLEX
MPI_REAL MPI_LOGICAL
MPI_DOUBLE_PRECISION MPI_CHARACTER

The parameters IDESTIN and ISOURCE are integers specifying the ranks of the

receiving and sending processors. The ITAG parameter and MPI COMM WORLD pa-

rameters represent an integer tag and communicator. The parameter STATUS has

dimension 2 and contains information regarding the data actually received. The

Þrst element of STATUS represents the source and the second element represents

the tag.

After each processor writes out its processor number and value of NP, the

code has an IF statement which tests the processor identiÞcation number. If

this number is zero, then processor 0 creates the message �GOOD NIGHT WORLD. A

do-loop is then created to send this message to the processors 1,2,3,4,5. Note

that each processor is executing the program. When a processor encounters the

IF statement testing the processor number, then if the processor identiÞcation

number is not zero, the processor is told that it should set up to receive the

message being sent from processor zero. Always remember, a copy of the Fortran

code is sent to each processor and each processor is executing the same code. The

code then tells each processor what it should do. In the Þrst half of the example

program each processor was told to write its identiÞcation number and the value

of NP (total number of processors). The second half of the program tells processor

zero to create a message and then send the message to the other processors. All

the processors with rank greater than zero are told to get ready to receive a

message. The parameters within the MPI SEND and MPI RECV commands are used

to distinguish between data being sent and received. This is the message-passing

part of MPI that slows down the over-all run time of the code. After receiving

the message that was sent, each processor is told to write out its processor

450

identiÞcation number, the value of NP and the message that was received. The

MPI FINALIZE(IERR) is a must statement at the end of the MPI usage.

The MPI library has around 125 commands built in. The type of commands

and number of commands are changing year to year. The six basic commands

MPI_INIT MPI_SEND
MPI_COMM_RANK MPI_RECV
MPI_COMM_SIZE MPI_FINALIZE

are all that is needed for many of the elementary uses of parallel processors

running MPI Fortran codes.

PROGRAM EXAMPLE1

C Assume 6 processors are being used

CHARACTER *16 MESSAGE

INCLUDE �mpif.h�

INTEGER STATUS

C

CALL MPI INIT(IERR)

CALL MPI COMM RANK(MPI COMM WORLD, ID-PROC, IERR)

CALL MPI COMM SIZE(MPI COMM WORLD, NP, IERR)

IF(NP .NE. 6) STOP �WRONG NUMBER OF PROCESSORS�

WRITE(*,100) ID-PROC,NP

100 FORMAT(1X,� hello world! I am processor number �,I3,

1 � OUT OF A TOTAL OF �,I3, � PROCESSORS�)

TAG=5

IF(ID-PROC .EQ. 0) THEN

MESSAGE=�GOOD NIGHT WORLD�

IDNO=NP-1

DO 10 I=1,IDNO

CALL MPI SEND(MESSAGE, 16, MPI CHARACTER, I, TAG,

1 MPI COMM WORLD, IERR)

10 CONTINUE

ELSE

CALL MPI RECV(MESSAGE, 16, MPI CHARACTER, 0, TAG),

1 MPI COMM WORLD, STATUS, IERR)

ENDIF

WRITE(*,101) ID-PROC,NP,MESSAGE

101 FORMAT(1X,�I am Þnished with processor number �,I3,

1 � OUT OF A TOTAL OF �,I3, � PROCESSORS�,1x,A16)

C

CALL MPI FINALIZE(IERR)

STOP

END

451

Example 11-2. (Another example.)

Another example of parallel programing, using the above commands, is given

in the computer program example2. The example2 code assumes the use of 4

processors where each processor is told to run a different computer code.

PROGRAM EXAMPLE2

C Assume 4 processors are being used

INCLUDE �mpif.h�

C

CALL MPI INIT(IERR)

CALL MPI COMM RANK(MPI COMM WORLD, ID, IERR)

CALL MPI COMM SIZE(MPI COMM WORLD, NP, IERR)

C ID is the processor number

C NP is the number of processors

IF(NP .NE. 4) STOP �WRONG NUMBER OF PROCESSORS�

C ID=0,1,2,3 are the processor numbers

C job 1 done on processor 0, job 2 done on processor 1, etc.

IF(ID .EQ. 0) THEN

{put job number 1 here}
ELSE IF (ID .EQ. 1) THEN

{put job number 2 here}
ELSE IF (ID .EQ. 2) THEN

{put job number 3 here}
ELSE

{put job number 4 here}
END IF

CALL MPI FINALIZE(IERR)

STOP �FINISHED�

END

Example 11-3.

The next example evaluates the integral I =
! b

a

f(x) dx using 32 processors.

Therefore, we divide the integral I into 32 parts and write

I =

! b0

a0

f dx+

! b1

a1

f dx+ · · ·+
! bi

ai

f dx+ · · ·+
! b31

a31

f dx

where a0 = a and b31 = b. The ith integration Ii =
! bi

ai

f(x) dx is to be performed

on processor number i, i = 0, 1, 2, . . . , 31. Here the distance bi − ai is the same for

452

each integral Ii and is given by

bi − ai = b− a
32

.

Therefore, each processor can use its own identiÞcation number to calculate the

local limits of integration ai and bi. The local starting value ai is found from the

relation

ai = a+ ID(b− a)/32
where ID is the processor identiÞcation number. The local upper limit bi is found

from the relation

bi = ai + (b− a)/32
for i = 1, 2, . . . , 31.We can deÞne a local step size h = (bi− ai)/N for each processor
and calculate the local integral Ii using the trapezoidal rule. For purposes of

illustration we select to use N = 30 panels for each local integral. After each

processor calculates the local integral the value obtained is sent back to processor

zero where all the information is summed.

In the program example3, we have selected a = 10 and b = 100 for the lower

and upper limit, these numbers can be changed. The subroutine for calculating

the local area using the trapezoidal rule and the function being integrated needs

to be deÞned and append to the program example3. The following subroutine

and function statement are representative of these required items.

SUBROUTINE TRAP(A, B, N, H, AREA)

C Trapezoidal rule for area under curve FUN(x)

EXTERNAL FUN

Area=(FUN(A)+FUN(B))/2.

x=A

DO 100 I=1,N-1

x=x+H

AREA=AREA+FUN(X)

100 CONTINUE

AREA=AREA*H

RETURN

END

FUNCTION FUN(X)

C Function to be integrated

FUN={put your function here}
RETURN

END

453

PROGRAM EXAMPLE3

C Assume 32 processors are being used

INTEGER STATUS

PARAMETER(a=10 , b= 100)

PARAMETER(N=30, ITAG=10, IDESTIN=0)

INCLUDE �mpif.h�

CALL MPI INIT(IERR)

CALL MPI COMM RANK(MPI COMM WORLD, ID, IERR)

CALL MPI COMM SIZE(MPI COMM WORLD, NP, IERR)

C ID=0, 1, 2, 3, . . . , 31 are the processor numbers
C Local limits of integration are given by

ai=a+ID*(b-a)/NP

bi=ai+(b-a)/NP

C Local step size H is

H=(bi-ai)/N

C Have each processor calculate local area

CALL TRAP(ai, bi, N, H, AREAi)

C Have processor 0 get ready to sum results and receive information

C TAREA is total area which is sum of areas AREAi

IF(ID .EQ. 0) THEN

TAREA=AREAi

C Get ready to receive information from other processors

DO 100 ISOURCE=1,NP-1

CALL MPI RECV(AREAi, 1, MPI REAL, ISOURCE, ITAG,

1 MPI COMM WORLD, STATUS, IERR)

TAREA=TAREA+Areai

100 CONTINUE

ELSE

C If processor ID greater than 0, then send results to processor 0

CALL MPI SEND(AREAi, 1, MPI REAL, IDESTIN, ITAG,

1 MPI COMM WORLD, IERR)

END IF

C Write out results

IF(ID .EQ. 0) THEN

WRITE(*,200) TAREA

200 FORMAT(1x,�AREA BY TRAPEZOIDAL RULE = �,E14.7)

END IF

CALL MPI FINIALIZE(IERR)

STOP

END

Example 11-4.

The next example program gets a little more complicated. The program

example4 is designed to test the transfer of an array using the MPI SEND and

MPI RECV commands. The example assumes the use of 4 processors.

454

PROGRAM EXAMPLE4

C Assume 4 processors are being used-Þll array with integer values 1-48

DIMENSION A(3,4,4)

INTEGER STATUS

INCLUDE �mpif.h�

CALL MPI INIT(IERR)

CALL MPI COMM RANK(MPI COMM WORLD, ID, IERR)

CALL MPI COMM SIZE(MPI COMM WORLD, NP, IERR)

C Each processor Þlls in part of the array

J=ID+1

DO 20 I=1,3

DO 21 K=1,4

A(I,J,K)=I+3.*(J-1)+12*(K-1)

21 CONTINUE

20 CONTINUE

C DeÞne new array ANEWA describing blocks, block length, stride

CALL MPI TYPE VECTOR(4, 3, 12, MPI REAL, ANEWA, IERR)

C You must commit this new array to all processors

CALL MPI TYPE COMMIT(ANEWA, IERR)

C Note in sending new array � only position of Þrst element need be speciÞed.

IF(ID .NE. 0) THEN

k=ID+1

CALL MPI SEND(A(1,k,1), 1, ANEWA, 0, 30, MPI COMM WORLD, IERR)

ELSE

DO 40 I=1,3

K=I+1

ISOURCE=I

CALL MPI RECV(A(1,K,1), 1, ANEWA, ISOURCE, 30,

1 MPI COMM WORLD, STATUS, IERR)

40 CONTINUE

END IF

IF(ID .EQ. 0) THEN

C Write out array and indexing

OPEN(4,FILE=�EX4.DAT�,STATUS=�UNKNOWN�)

DO 50 I=1,3

DO 60 J=1,4

DO 70 K=1,4

INT=I+3*(J-1)+12*(K-1)

WRITE(4,90)INT,I,J,K,A(I,J,K)

90 FORMAT(1x,4(1x,I3),1x,F5.1)

70 CONTINUE

60 CONTINUE

50 CONTINUE

close (4)

END IF

CALL MPI FINALIZE(IERR)

STOP

END

