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�An expert is someone who knows some of the worst mistakes that can be made in his

subject, and how to avoid them.�

Werner Heisenberg (1901-1976)

Chapter 3

Linear and Nonlinear Systems

In this chapter we investigate direct methods and iterative methods for solv-

ing linear systems of equations of the form

E1 : a11x1 + a12x2 + · · ·+ a1jxj + · · ·+ a1nxn = b1

E2 : a21x1 + a22x2 + · · ·+ a2jxj + · · ·+ a2nxn = b2

...
...

. . .
...

...

Ei : ai1x1 + ai2x2 + · · ·+ aijxj + · · ·+ xinxn = bi

...
...

. . .
...

...

Em : am1x1 + am2x2 + · · ·+ amjxj + · · ·+ amnxn = bm

. (3.1)

where the coefficient in the ith row and jth column is denoted by aij for i = 1, . . . ,m

and j = 1, . . . n. These coefficients of the system are assumed to be known and

the quantities on the right-hand side bi for i = 1, . . .m are also assumed to be

known. The equations are labeled E1, E2, . . . , Em and the problem is to solve for,

if possible, the unknowns x1, x2, . . . , xn. This system represents m linear equations

from which n unknowns must be determined. The system is referred to as a

m × n (read m by n) linear system of equations since it has m equations with n

unknowns, with m not necessarily equal to n.

The above system of equations can be written in alternative forms. One

compact form is to write the system of equations as

Ei :
n!
j=1

aijxj = bi, i = 1, 2, . . . ,m (3.2)

The system of equations (3.1) can also be expressed in the matrix form

Ax = b (3.3)
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where

A = [aij ] =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , x =


x1
x2
...

xn−1
xn

 , b =


b1
b2
...
bm

,

 (3.4)

Here it is to be understood that i, j are integers in the range 1 ≤ i ≤ m and

1 ≤ j ≤ n with aij denoting the matrix element in the ith row and jth column.
The matrix A is called a m× n (read m by n) matrix. The special n× 1 matrix x
is called a n-dimensional column vector with xi, 1 ≤ i ≤ n, the element in the ith
row. Similarly, the special m×1 matrix b is called a m-dimensional column vector
with bk denoting the element in the kth row, for 1 ≤ k ≤ m.We will examine direct
methods of solution and iterative methods for solving such systems.

We also investigate methods for solving nonlinear systems of equations of

the form
E1 :

E2 :

...

Em :

f1(x1, x2, . . . , xn) =0

f2(x1, x2, . . . , xn) =0

...

fm(x1, x2, . . . , xn) =0

(3.5)

where fi, for i = 1, . . . ,m, represent known continuous functions of the variables

x1, x2, . . . , xn. The problem is to Þnd, if possible, some numerical procedure for

determining the unknown quantities x1, x2, . . . , xn which satisfy all of the nonlinear

equations in the system of equations (3.5). Note that the system of equations

(3.1) is a special case of the more general system of equations (3.5). The system

of nonlinear equations (3.5) can be written in the vector form

f(x) = 0 where x =


x1
x2
...
xn

 and f(x) =


f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn

...
fm(x1, x2, . . . , xn)

 (3.6)

with 0 being an m-dimensional column vector of zeros.

We develop several numerical methods which are applicable for solving sys-

tems of the above types. We desire to develop numerical methods for solving the

above systems of equations in cases where the numbers m and n are large. In

some applied problems it is not unusual for the number of unknowns x1, x2, . . . , xn
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to be very large, say n > 105 or n > 106. For illustrative purposes and examples of

the numerical techniques we will use much smaller values for n.

Preliminaries

In dealing with the matrix form associated with the equations (3.2) there

are occasions when it is convenient to make use of special matrices and special

functions associated with these matrices. Some of these special matrices and

functions are as follows.

(i) The n × n identity matrix I = [δij ], where δij =
(
1, if i = j
0, if i "= j . The identity

matrix has 1�s down the main diagonal and 0�s everywhere else. A 3 × 3

identity matrix has the form I =

 1 0 0
0 1 0
0 0 1

 .
(ii) If A is a n × n square matrix and there exists a matrix B with the property

that BA = AB = I, then B is called the inverse of A and is written B = A−1.

That is, the inverse matrix A−1 has the property that AA−1 = A−1A = I. If

A−1 exists, then A is said to be nonsingular. If the matrix A does not have

an inverse, then the matrix A is said to be singular. In the special case m = n

and A is a square matrix having an inverse, then the solution to the matrix

system (3.3) can be symbolically obtained by multiplying both sides of the

matrix equation (3.3) by the inverse of A to obtain

A−1Ax = A−1b which simpliÞes to x = I x = A−1b.

This technique for solving a n × n linear system of equations is only recom-

mended in the case where n is small. This is because the number of multiply

and divided operations needed to calculate A−1 increases like n3 and so the

inverse matrix calculation becomes very lengthy and burdensome when n is

large.

(iii) Associated with a m×n matrix A = [aij ] is the n×m transpose matrix denoted
by AT = [aji] and formed by interchanging the rows and columns of the m×n
matrix A. Note that column vectors such as the x given in equation (3.4)

can be expressed as x = [x1, x2, . . . , xn]T . The transpose is used to determine if

a matrix is symmetric. A square matrix is said to be symmetric if AT = A.

The matrix product ATA always produces a square matrix. The transpose
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operation satisÞes the following properties.

(i) (AB)T =BTAT

(ii) (A−1)T =(AT )−1

(iii) (AT )T =A

The transpose of a product is the product

of the transpose matrices in reverse order.

When A−1 exists, then the transpose of an inverse

is the inverse of the transpose.

The transpose of the transpose matrix

returns the original matrix.

(iv) A n× n lower triangular matrix L = ["ij ] has the form

L =


"11
"21 "22
"31 "32 "33
...

...
...

. . .
"n1 "n2 "n3 · · · "nn

 "ij = 0 for j > i (3.7)

with all zeros above the main diagonal. In the special case the diagonal

elements of a lower triangular matrix are all 1�s, then L is called a unit lower

triangular matrix.

(v) A n× n upper triangular matrix U = [uij ] has the form

U =


u11 u12 u13 · · · u1n

u22 u23 · · · u2n
u33 · · · u3n

. . .
...
unn

 uij = 0 for i > j (3.8)

with all zeros below the main diagonal. In the special case the diagonal

elements of an upper triangular matrix are all 1�s, then U is called a unit

upper triangular matrix.

(vi) A n× n square matrix A = [aij ] with the property that

aij =

(
0, for i+ s ≤ j, 1 < s < n

0, for j + t ≤ i, 1 < t < n
(3.9)

is said to be a banded matrix with band width w = s+ t−1. For example, the
5× 5 tridiagonal matrix 

a11 a12 0 0 0
a21 a22 a23 0 0
0 a32 a33 a34 0
0 0 a43 a44 a45
0 0 0 a54 a55

 (3.10)
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is a banded matrix with band width 3. Tridiagonal matrices occur quite

frequently. The elements in a tridiagonal matrix are along the diagonal, the

subdiagonal and superdiagonal. Tridiagonal system of equations are easily

solved. Tridiagonal matrices are sometimes denoted using the notation

T = tridiagonal(#a,#b,#c)

where

#a =(a1, a2, a3, a4, . . . , an−1, an) is vector along the subdiagonal

#b =(b1, b2, b3, b4, . . . , bn−1, bn) is vector along the diagonal

#c =(c1, c2, c3, c4, . . . , cn−1, cn) is vector along the superdiagonal

This is a shorthand notation for the tridiagonal matrix

T = [tij ] =



b1 c1
a2 b2 c2

a3 b3 c3
. . .

. . .
. . .

an−1 bn−1 cn−1
an bn

 with
(
tij = 0, i > j + 2

tij = 0, j > i+ 2

Another matrix which is nice to work with is the diagonal matrix with band

width one. An example of a 5× 5 diagonal matrix is

D =


a11 0 0 0 0
0 a22 0 0 0
0 0 a33 0 0
0 0 0 a44 0
0 0 0 0 a55

 (3.11)

(vii) A n× n matrix A with diagonal elements aii for i = 1, 2, . . . , n and satisfying

|aii| ≥
n!
j=1
j !=i

|aij | for i = 1, 2, . . . n (3.12)

is said to be diagonally dominant.

(viii) A vector norm % · % is a mapping from Rn to R which is a measure of distance

associated with vectors x = [x1, x2, . . . , xn]T . Vector norms have the following

properties:

(a) % x %≥ 0 for all x ∈ Rn.
(b) % αx %= |α| % x % where α is a scalar ∈ R.
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(c) % x+ y %≤ % x % + % y % for all x,y ∈ Rn.
(d) % x %= 0 if and only if x = 0.
The Euclidean norm or "2 norm is used most often and is deÞned

% x %2=
)

n!
i=1

x2i

*1/2
(3.13)

This norm represents the distance of the point (x1, x2, . . . , xn) from the origin.

Other vector norms can be deÞned so long as they obey the above properties.

Two other vector norms used quite frequently are the "∞ norm and "p norm

deÞned respectively as
% x %∞= max

1≤i≤n
|xi|

% x %p=
)

n!
i=1

|xi|p
*1/p (3.14)

(ix) A matrix norm % A % associated with a n×n matrix A = [aij ] is any real-valued
function % · % which satisÞes the properties:
(a) % A %≥ 0
(b) % αA %≤ |α| % A % where α is a scalar ∈ R
(c) % A+B %≤% A % + % B %, where A,B are n× n matrices.
(d) % AB %≤% A %% B %
(e) % A %= 0 if and only if aij = 0 for all i, j values.
The quantity % A−B % is used to measure the nearness of two n×n matrices.

Let % · % denote a vector norm, then the natural matrix norm of a n × n matrix
A is deÞned

% A %= max
$x$=1

% Ax % . (3.15)

For example, the "2 norm of the n× n matrix A would be represented

% A %2= max
$x$2=1

% Ax %2 (3.16)

and the "∞ norm of A would be represented

% A %∞= max
$x$∞=1

% Ax %∞ (3.17)

It can be shown, see the Bronson reference, that if A = (aij) is a n × n matrix,
then

% A %∞= max
1≤i≤n

n!
j=1

|aij |.
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(x) The characteristic polynomial associated with the real n × n matrix A is

deÞned in terms of a determinant and given by

p(λ) = det [A− λI] (3.18)

where λ is a scalar and I is the n× n identity matrix. The values of λ which
satisfy the characteristic equation p(λ) = 0 are called eigenvalues associated

with the matrix A. Nonzero vectors x with the property that Ax = λx are

called eigenvectors of A corresponding to the eigenvalue λ.

(xi) The spectral radius ρ(A) of the n× n matrix A is deÞned
ρ(A) =max |λ| (3.19)

where λ is an eigenvalue of A. If an eigenvalue is complex with the value

λ = λ1+ iλ2, then |λ| =
+
λ21 + λ

2
2. It can be shown that the spectral radius has

the properties

(i) ρ(A) ≤% A % for any matrix norm % · %.
(ii)

,
ρ(ATA) =% A %2

(xii) The condition number K(A) associated with a nonsingular matrix A is deÞned

K(A) =% A %% A−1 % (3.20)

where % · % is a natural norm. A matrix A is said to be well behaved or well-
conditioned if its condition number is close to unity. It is called ill behaved or

ill-conditioned if the condition number is far from unity. Great care should

be taken when working with ill-conditioned matrices.

Eigenvalues and Eigenvectors

A n× n square matrix A can be used as an operator to transform a nonzero

n× 1 column vector #x. One can imagine an input-output system such as the one

illustrated in the Þgure 3-1.

Figure 3-1. An example of a linear operator.
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Those nonzero vectors #x having the special property that the output is pro-

portional to the input must satisfy

A#x = λ#x (3.21)

where λ is a scalar proportionality constant. The special nonzero vectors #x

satisfying equation (3.21) are called eigenvectors and the corresponding scalars

λ are called eigenvalues. The equation (3.21) is equivalent to the homogeneous

system

A#x− λ#x = (A− λI)#x = #0 (3.22)

where I is the n× n identity matrix. The equation (3.22) has a nonzero solution
if and only if

det (A− λI) = |A− λI| = 0. (3.23)

The equation (3.23) when expanded is a polynomial equation in λ of degree n

having the form

C(λ) = |A− λI| = (−λ)n + cn−1(−λ)n−1 + · · ·+ c1(−λ) + c0 = 0 (3.24)

which is called the characteristic equation associated with the square matrix A.

The solutions of equation (3.24) give the eigenvalues associated with the n × n
square matrix A. For any given eigenvalue λ, the matrix A−λI is a singular matrix
such that the homogeneous equations (3.22) produce a nonzero eigenvector #x.

Note that if #x is an eigenvector, then any nonzero constant times #x is also an

eigenvector.

Example 3-1. (Eigenvalues and Eigenvectors)

Find the eigenvalues and eigenvectors associated with the matrix

A =

-
1 0
1 1

.
.

Solution: We construct the homogeneous system

(A− λI)#x = #0 or
-
1− λ 0
1 1− λ

. -
x1
x2

.
=

-
0
0

.
. (3.25)

The characteristic equation is found to be

C(λ) =

//// 1− λ 0
1 1− λ

//// = (1− λ)2 = 0.
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The eigenvalues are λ1 = 1 and λ2 = 1. For λ = 1, the equation (3.25) reduces to-
0 0
1 0

. -
x1
x2

.
=

-
0
0

.
.

Therefore, #x = k
-
0
1

.
is an eigenvector for any nonzero constant k.

Elementary Row Operations

To solve the system of equations (3.1) one is allowed to perform any of the

following elementary row operations on the system of equations.

(i) An equation in row i can be multiplied by a nonzero constant α. That is,

equation Ei is replaced by the equation αEi. This is denoted by the notation

(αEi → Ei) and is read, �The constant α times equation Ei replaces the

equation Ei.

(ii) Equation Ej can be replaced by a multiple of equation Ei added to equation

Ej . This can be expressed using the above notation as (αEi +Ej → Ej) where

i "= j
(iii) Any two equations can be interchanged. This is denoted by the notation

(Ei ↔ Ej) where i "= j.

Example 3-2. (Elementary row matrices.)

Row operations performed upon the identity matrix I produces elementary

row matrices E. Consider the 3 × 3 identity matrix I =
 1 0 0
0 1 0
0 0 1

, then some
examples of elementary row matrices are:

(i) Interchanging rows 2 and 3 gives

the elementary row matrix E1 =

 1 0 0
0 0 1
0 1 0


(ii) Multiplying row 3 by the scalar 5 gives

the elementary row matrix E2 =

 1 0 0
0 1 0
0 0 5


(iii) Multiplying row 1 by 6 and adding the result

to row 2 gives the elementary row matrix E3 =

 1 0 0
6 1 0
0 0 1


Note that if A =

a b c
d e f
g h i

 is a 3× 3 matrix, then
E1A =

 d e f
a b c
g h i

 , E2A =

 a b c
d e f
5g 5h 5i

 , E3A =

 a b c
d+ 6a e+ 6b f + 6c
g h i


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Observe that the elementary row operations recorded in the matrices E1, E2, E3
have been applied to the matrix A.

A shorthand notation for recording the row operations performed upon a

linear system of equations is to write down the coefficient matrix A of the linear

system Ax = b and then append to the right-hand side of A the column vector

b. The resulting array is called an augmented matrix and is written

[A b] =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

b1
b2
...
bm

 .
Our objective is to perform row operations upon the resulting array and try

to reduce the array A to an upper triangular form. The row operations are

then recorded in the augmented column vector. For example, consider the 2× 3
augmented array )

a11 a12
a21 a22

b1
b2

*
,

with a11 nonzero, where we multiply the Þrst row by −a21/a11 and add the result
to row 2 to obtain the triangular system)

a11 a12
a21 a22

b1
b2

*
E1 :

−a21
a11
E1 +E2 → E2 :

)
a11 a12
0 c22

b1
d2

*
where c22 = a22−a21a12/a11 and d2 = b2−a21b1/a11. The nonzero element a11 is called
a pivot element in the diagonalization process. The resulting upper triangular

system can then be solved by back substitution methods.

Gaussian Elimination

The Gaussian elimination method reduces a matrix to upper triangular (or

lower triangular) and then uses back substitution to solve for the unknowns. The

method is illustrated using an example.

Example 3-3. (Gaussian elimination method.)

Solve the system of equations

E1 : 3x1 − 2x2 + x3 =8

E2 : 4x1 + x2 − 3x3 =3
E3 : x1 + 5x2 − 4x3 =5

(3.26)


