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�We have a habit in writing articles published in scientiÞc journals to make the work as

Þnished as possible, to cover up all the tracks, to not worry about the blind alleys or describe

how you had the wrong idea Þrst, and so on. So there isn�t any place to publish, in a digniÞed

manner, what you actually did in order to get to do the work. �

Richard Philips Feynman (1918 - 1988)

Chapter 7

Numerical Differentiation and Integration

A given set of (n+1) data points (xi, yi), i = 0, 1, 2, . . . , n is assumed to represent

some function y = y(x). The data can come from some experiment or statistical

study, where y = y(x) is unknown, or the data can be generated from a known

function y = y(x).We assume the data points are equally spaced along the x-axis

so that xi+1−xi = h is a constant for i = 0, 1, 2, . . . , n−1. In this chapter we develop
ways to approximate the derivatives of y = y(x) given only the data points. We

also develop ways to integrate the function y = y(x) based solely upon the data

points given.

Numerical Approximation for Derivative

To approximate the derivative function y!(x), evaluated at one of the given

data points (xi, yi), say at x = xm, x0 < xm < xn, we assume that the function y(x)

has a Taylor series expansion about the point xm given by either of the forms

y(xm + h) = y(xm) + y
!(xm)h+ y!!(xm)

h2

2!
+ y!!!(xn)

h3

3!
+ · · · (7.1)

or

y(xm − h) = y(xm)− y!(xm)h+ y!!(xm)h
2

2!
− y!!!(xm)h

3

3!
+ · · · (7.2)

By solving the equation (7.1) for the Þrst derivative one obtains the forward

derivative approximation

y!(xm) =
y(xm + h)− y(xm)

h
+O(h). (7.3)

Solving the equation (7.2) for the Þrst derivative gives the backward derivative

approximation

y!(xm) =
y(xm)− y(xm − h)

h
+O(h). (7.4)



246

Subtracting the equation (7.2) from the equation (7.1) gives

y(xm + h)− y(xm − h) = 2y!(xm) + 2y!!!(xm)h
3

3!
+ · · · (7.5)

from which one can obtain the central derivative approximation

y!(xm) =
y(xm + h)− y(xm − h)

2h
+O(h2) (7.6)

which is more accurate than the results from equations (7.3) or (7.4). By using

Taylor series expansions one can develop a variety of derivative approximations.

One can derive a derivative approximation for any order derivative. Consider

an approximation for the jth derivative

djy

dxj x=xi

= y(j)(xi), (7.7)

where j a positive integer. The derivative can be approximated by assuming the

derivative can be represented in the form

y(j)(xi) =
1

hj
[βmy(xi −mh) + βm−1y(xi − (m− 1)h) + · · ·+ β1y(xi − h)

α0y(xi) + · · ·+ αn−1y(xi + (n− 1)h) + αny(xi + nh)] +O(hN )
(7.8)

involving (m + n + 1) data points, where βm,βm−1, . . . ,β1,α0,α1, . . . ,αn and N are

constants to be determined. Let yi+j = y(xi+ jh) for the index j ranging over the

values j = −m,−(m − 1), . . . , (n − 1), n and expand these terms in a Taylor series
which are then substitute into the equation (7.8). One can then collect like

terms and force the right-hand side of equation (7.8) to equal the left-hand side

of equation (7.8) by setting certain coefficients equal to either zero or one. This

will produce a system of equations where the coefficients βm, . . . ,β1,α0, . . . ,αn and

the order N of the error term can be determined .

Example 7-1. (Derivative formula)

Derive a formula for the Þrst derivative of the form

y!(xm) =
1

h
[α0ym + α1ym+1 + α2ym+2] +O(hN ) (7.9)

where α0,α1,α2 and N are constants to be determined.

Solution: Substitute the Taylor series expansions

ym+1 = y(xm + h) =y(xm) + y
!(xm)h+ y!!(xm)

h2

2!
+ · · ·

ym+2 = y(xm + 2h) =y(xm) + y
!(xm)(2h) + y!!(xm)

(2h)2

2!
+ · · ·

(7.10)



247

into the assumed form for the derivative to obtain

y!m =
1

h

!
α0ym + α1

"
ym + y

!
mh+ y

!!
m

h2

2
+ · · ·

#
+ α2

"
ym + y

!
m(2h) + y

!!
m

(2h)2

2
+ · · ·

#$
.

We collect like terms and write the above equation in the form

y!m =
1

h

!
(α0 + α1 + α2)ym + (α1h+ α2(2h))y

!
m + (α1

h2

2
+ α2(2h

2))y!!m +O(h3)
$

(7.11)

In order that the right-hand side of equation (7.11) reduce to y!m we require the

unknown coefficients to satisfy the equations

α0 + α1 + α2 = 0
α1 + 2α2 = 1

(1/2) α1 + 2α2 = 0.
(7.12)

We solve this system of equations and Þnd α0 = −3/2, α1 = 2 and α2 = −1/2. This
gives the derivative formula

y!(xm) =
−3ym + 4ym+1 − ym+2

2h
+O(h2) (7.13)

where the 1/h factor has simpliÞed the error term in equation (7.11). By including

more terms in the expansions above one can determine the exact form for the

error term.

Example 7-2. (Derivative formula)

Derive an approximation formula for the second derivative of the form

y!!(xm) =
1

h2
[β1ym−1 + α0ym + α1ym+1] +O(hN ) (7.14)

where β1,α0,α1 and N are constants to be determined.

Solution: Substitute the Taylor series expansions given by equations (7.1) and

(7.2) into the equation (7.14) and then combine like terms to obtain

y!!(xm) =
1

h2
[(β1 + α0 + α1)ym−1 + (α0h+ α1(2h))y!m

+(α0h
2/2 + α1(2h

2))y!!m + (α1 − β1)y!!!m
h3

3!
+ (α1 + β1)y

(iv)
m

h4

4!
+ · · ·

$
.

(7.15)

In order for the right-hand side of this equation to reduce to y!!m we require the

coefficients to satisfy the conditions

β1 + α0 +α1 = 0
α0 +2α1 = 0

(1/2) α0 +2α1 = 1
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We solve this system of equations and Þnd β1 = 1, α0 = −2 and α1 = 1. Observe
that these values for β1,α0,α1 make the y!!!m coefficient zero and so one obtains the

second derivative approximation

y!!(xm) =
ym−1 − 2ym + ym+1

h2
+O(h2). (7.16)

Derivative approximations of a function can also be derived by differentiat-

ing a polynomial approximation of the function. For example, one can use a

polynomial approximations such as the Newton forward, Newton backward or

Stirling polynomial approximations for y(x) and then one can differentiate the

polynomial approximation and use that as an approximation for the derivative.

For the Þrst derivative one obtains the approximation

dy

dx x=x0

≈ dPn(s)

ds

ds

dx x=x0

, where s =
x− x0
h

(7.17)

Approximations for higher derivatives can be obtain by taking higher order

derivatives of the approximating polynomials. This gives the approximation

dmy

dxm
≈ 1

hm
dmPn(s)

dsm
(7.18)

for m = 1, 2, 3, . . . . Differentiation is a roughening process and so one should ex-

pect to obtain large errors when using collocation polynomials to approximate

a derivative. The error term associated with a derivative of an interpolating

polynomial is obtained by differentiating the error term of the interpolating

polynomial.

Example 7-3. (Derivative formula)

Obtain approximations for the derivatives y!(x0), y!!(x0) and y!!!(x0) by differentia-

tion of the Stirling polynomial approximation which we obtain from the lozenge

diagram of Þgure 4-1

y(x) ≈ Pn(x) =y0 +
"
s

1

#
∆y0 +∆y−1

2
+

%
s+1
2

&
+
%
s
2

&
2

∆2y−1

+

"
s+ 1

3

#
∆3y−1 +∆3y−2

2
+

%
s+2
4

&
+
%
s+1
4

&
2

∆4y−2 + · · ·
(7.19)

where s =
x− x0
h

takes on integer values at x0, x1, . . . .

Solution: We use chain rule differentiation to differentiate the approximating



249

polynomial and then use these derivatives to approximate the derivatives of y(x).

Expanding the equation (7.19) we Þnd

y(x) ≈y0 + s
"
∆y0 +∆y−1

2

#
+
1

2
s2∆2y−1 +

1

6
(s3 − s)

"
∆3y−1 +∆3y−2

2

#
+
1

24
(s4 − s2)∆4y−2 + · · ·

with derivatives

y!(x) ≈ 1
h

!"
∆y0 +∆y−1

2

#
+ s∆2y−1 +

1

6
(3s2 − 1)

"
∆3y−1 +∆3y−2

2

#
+
1

24
(4s3 − 2s)∆4y−2 + · · ·

$
y!!(x) ≈ 1

h2

!
∆2y−1 + s

"
∆3y−1 +∆3y−2

2

#
+
1

12
(6s2 − 1)∆4y−2 + · · ·

$
y!!!(x) ≈ 1

h3

!"
∆3y−1 +∆3y−2

2

#
+ s∆4y−2 + · · ·

$
At the point x = x0 we have s = 0 and so we obtain the approximations

y!(x0) ≈ 1
h

!"
∆y0 +∆y−1

2

#
− 1
6

"
∆3y−1 +∆3y−2

2

#$
y!!(x0) ≈ 1

h2

!
∆2y−1 − 1

12
∆4y−2

$
y!!!(x0) ≈ 1

h3

!"
∆3y−1 +∆3y−2

2

#$
These same results can be obtain by differentiating the equation (4.95) consid-

ered earlier. Note also that derivative approximations can be obtained from the

appropriate values of a difference table. Alternatively, the differences can be

expressed in terms of ordinate values and so the above derivative formulas can

also be expressed in terms of ordinate values.

Error Terms for Derivative Approximations

To derive error terms associated with numerical differentiation or integration

we will need the following results.

(1.) If F (x) is a continuous function over the interval a ≤ x ≤ b, then there

exists at least one point c such that a ≤ c ≤ b and

αF (a) + βF (b) = (α+ β)F (c) (7.20)

for positive constants α and β.
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(2.) A generalization of the above result is the following. For F (x) continuous

over the interval a < x < b, with points xi satisfying a ≤ xi ≤ b for i = 1, . . . , n
then one can write

F (x1) + F (x2) + · · ·+ F (xn) = nF (ξ) (7.21)

for some value ξ lying in the interval [a, b].

The result (7.20) follows from the inequalities, that if F (a) ≤ F (b), then for
positive weights α and β

(α+ β)F (a) ≤ αF (a) + βF (b) ≤ (α+ β)F (b)

or

F (a) ≤ αF (a) + βF (b)

α+ β
≤ F (b).

Hence, if F (x) is continuous over the interval [a, b], then there exists at least one

point c such that
αF (a) + βF (b)

α+ β
= F (c).

The result (7.21) is obtained by similar arguments.

The error associated with an ith derivative approximation evaluated at a

point x0 is deÞned

Error = y(i)(x0)− y(i)(x0)approx (7.22)

Most error terms can be obtained by truncation of appropriate Taylor series

expansions. For example, to Þnd an error term associated with the forward

derivative approximation y!0 =
y1 − y0
h

we truncate the Taylor series expansion

and write

y1 = y(x0 + h) = y(x0) + y
!(x0)h+ y!!(ξ)

h2

2!
, x0 < ξ < x0 + h (7.23)

The error term is then found from the relation

y!(x0)−
"
y(x0 + h)− y(x0)

h

#
= Error (7.24)

Substituting the Taylor series expansion for y(x0 + h) gives

Error = y!0 −
1

h

!
y0 + y

!
0h+ y(ξ)

!!h
2

2!
− y0

$
= −h

2
y!!(ξ). (7.25)
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Sometimes it is necessary to use Taylor series expansions on one or more

terms in a derivative approximation. For example, to Þnd an error term as-

sociated with the central difference approximation for the second derivative

y!!0 =
y−1 − 2y0 + y1

h2
we use truncated Taylor series expansions from equations

(7.1) and (7.2) to obtain

Error =y!!0 −
"
y−1 − 2y0 + y1

h2

#
Error =y!!0 −

1

h2

!
y0 − y!0h+ y!!0

h2

2
− y!!!0

h3

6
+ y

(iv)
0 (ξ1)

h4

24
− 2y0

+y0 + y
!
0h+ y

!!
0

h2

2
+ y!!!0

h3

6
+ y

(iv)
0 (ξ2)

h4

24

$ (7.26)

which simpliÞes to

Error = −h
2

12
y
(iv)
0 (ζ) (7.27)

To derive the result given by equation (7.27) we have made the assumption that

the derivative y(iv)0 (x) is a continuous function so that

h4

24
y
(iv)
0 (ξ1) +

h4

24
y
(iv)
0 (ξ2) =

"
h4

24
+
h4

24

#
y
(iv)
0 (ζ)

which is a special case of the result (7.20) previously cited. Note also we had to

go to fourth order terms in the expansions because the third order terms added

to zero.

Method of Undetermined Coefficients

One can assume a derivative formula for f !(x) involving undetermined coef-

Þcients and then select the coefficients so that the assumed derivative represen-

tation is exact when the function f(x) is a polynomial. For example, with equal

spacing where xi+1 = xi + h, one can assume a derivative formula

f !(xi) = β0f(xi) + β1f(xi+1) + β2f(xi+2) (7.28)

where β0,β1, β2 are undetermined coefficients, and then require that this formula

be exact for the cases f(x) = 1, f(x) = x − xi and f(x) = (x − xi)2. In this way
one obtains three equations from which the three unknowns β0,β1, β2 can be

determined. We have:

For f(x) = 1, the equation (7.28) becomes 0 =β0 + β1 + β2

For f(x) = x− xi, the equation (7.28) becomes 1 = β1h+ β22h

For f(x) = (x− xi)2, the equation (7.28) becomes 0 = β1h
2 + β24h

2

(7.29)
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We solve the equations (7.29) and Þnd β0 = −3/2h, β1 = 4/2h, and β2 = −1/2h.
This gives the Þrst derivative formula

f !(xi) =
1

2h
[−3f(xi) + 4f(xi+1)− f(xi+2)] (7.30)

The error term associated with this formula can be obtained from equation (7.22)

together with appropriate Taylor series expansions. The method of undeter-

mined coefficients is applicable for determining both derivative and integration

formulas.

Numerical Integration

In this section we develop integration formulas and associated error terms

which can be used for evaluating integrals of the form

I1 =

' b

a

f(x) dx or I2 =

' b

a

w(x)f(x) dx (7.31)

where w(x) is called a weight function. Integration formulas are also referred to

as quadrature formulas. The term quadrature coming from the ancient practice

of constructing squares with area equivalent to that of a given plane surface.

The integrands f(x) or w(x)f(x) in equations (7.31) are assumed to be continuous

with known values over the interval a ≤ x ≤ b. The interval [a, b], over which the
integral is desired, is divided by (n+1) points into sections with a = x0 < x1 < x2 <

. . . < xn = b. This is called partitioning the interval into n-panels. These panels

can be of equal lengths or unequal lengths as illustrated in the Þgure 7-1.

Figure 7-1. Partition of interval [a, b] into n-panels.
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By developing integration formulas for the area under the curve associated

with one or more panels, one can repeat the integration formula until the area

associated with all panels is calculated. We begin by developing a one-panel

formula.

Assume that the interval [a, b] is partitioned with equal spacing with

a = x0, b = xn, h =
b− a
n

, xj = x0 + jh, for j = 0, 1, 2, . . . , n. (7.32)

The area under the curve y = f(x) between

xi−1 and xi is approximated by constructing a

straight line interpolating polynomial through

the points (xi−1, yi−1) and (xi, yi) and then in-

tegrating this interpolation function. We use

yi−1 = f(xi−1) and yi = f(xi) and obtain from the

lozenge diagram of Þgure 4-1, with appropriate

notation change, the straight line

P1(x) = yi−1 + s∆yi−1 + s(s− 1)h
2

2
f !!(ξ(x)), where s =

x− xi−1
h

(7.33)

and ∆yi−1 = yi − yi−1. The area associated with one-panel is then approximated
by ' xi

xi−1
f(x) dx ≈

' xi

xi−1
P1(x) dx =

' xi

xi−1

!
yi−1 + s∆yi−1 + s(s− 1)h

2

2
f !!(ξ(x))

$
dx. (7.34)

We use the change of variable for s given by equation (7.33) and integrate the

Þrst two terms of equation (7.34) to obtain

' xi

xi−1
f(x) dx = h

!
syi−1 +

s2

2
∆yi−1

$1
0

=
h

2
[yi−1 + yi] (7.35)

which is known as the trapezoidal rule since the area of a trapezoid is the average

height times the base. Alternatively the trapezoidal rule can be derived by

integrating the Lagrange interpolating polynomial

P1(x) =
x− xi
xi−1 − xi f(xi−1) +

x− xi−1
xi − xi−1 f(xi)

from xi−1 to xi.
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The last integral in equation (7.34) represents an integral of the error term

accompanying the approximation polynomial. In order to evaluate this last

integral we use the mean value theorem' xn

xm

f(x)g(x) dx = f(ζ)

' xn

xm

g(x) dx, xm < ζ < xn, (7.36)

where it is assumed that the functions f, g are continuous in the interval [xm, xn]

and g(x) remains of one sign over the interval. i.e. Either g(x) ≥ 0 or g(x) ≤ 0 over
the interval. By integrating the error term of the straight line approximating

polynomial one obtains the local error term associated with the trapezoidal rule

formula. This integration produces

local error =

' xi

xi−1
(s2 − s)h

2

2
f !!(ξ(x)) dx, s =

x− xi−1
h

, h ds = dx

local error =
h3

2
f !!(ζ)

' 1

0

(s2 − s) ds = h3

2
f !!(ζ)

!
s3

3
− s

2

2

$1
0

local error =− h
3

12
f !!(ζ).

(7.37)

The one-panel trapezoidal formula with local error term can be written in either

of the forms ' xi

xi−1
f(x) dx =

h

2
[yi−1 + yi]− h

3

12
f !!(ζ)

or
' xi

xi−1
f(x) dx =

h

2
[f(xi−1) + f(xi)]− h

3

12
f !!(ζ)

(7.38)

By partitioning an interval [x0, xn] into n+ 1 points one can write' xn

x0

f(x) dx =
n(
j=1

' xj

xj−1
f(x) dx. (7.39)

Now one can apply the trapezoidal rule to each of the n-panels. The sum that

results gives a representation of the integral over the interval [x0, xn]. This rep-

resentation is called the extended trapezoidal rule or composite trapezoidal rule

and can be represented for equal or unequal panel spacing. For unequal panel

spacing the extended trapezoidal rule is written' xn

x0

f(x) dx =
h1
2
(y0 + y1) +

h2
2
(y1 + y2) + · · ·+ hn

2
(yn−1 + yn) + global error (7.40)


