
303

�On two occasions I have been asked [by members of Parliament], �Pray, Mr. Babbage,

if you put into the machine wrong Þgures, will the right answers come out?� I am not able

rightly to apprehend the kind of confusion of ideas that could provoke such a question. �

Charles Babbage (1792-1871)

Chapter 8

Ordinary Differential Equations

Many ordinary differential equations encountered do not have easily obtain-

able closed form solutions, and we must seek other methods by which solutions

can be constructed. Numerical methods provide an alternative way of construct-

ing solutions to these sometimes difficult problems. In this chapter we present an

introduction to some numerical methods which can be applied to a wide variety

of ordinary differential equations. These methods can be programmed into a

digital computer or even programmed into some hand-held calculators. Many of

the numerical techniques introduced in this chapter are readily available in the

form of subroutine packages available from the internet.

We consider the problem of developing numerical methods to solve a Þrst

order initial value problem of the form

dy

dx
= f(x, y), y(x0) = y0 (8.1)

and then consider how to generalize these methods to solve systems of ordinary

differential equations having the form

dy1
dx

=f1(x, y1, y2, . . . , ym), y1(x0) = y10

dy2
dx

=f2(x, y1, y2, . . . , ym), y2(x0) = y20

...
dym
dx

=fm(x, y1, y2, . . . , ym), ym(x0) = ym0

(8.2)

304

Coupled systems of ordinary differential equations are sometimes written in the

vector form
d!y

dx
= !f(x, !y), !y(x0) = !y0 (8.3)

where !y, !y(x0) and !f(x, !y) are column vectors given by !y = col(y1, y2, y3, . . . , ym),

!y(x0) = col(y10, y20, . . . , ym0) and !f(x, !y) = col(f1, f2, . . . , fm).

We start with developing numerical methods for obtaining solutions to the

Þrst order initial value problem (8.1) over an interval x0 ≤ x ≤ xn. Many of the
techniques developed for this Þrst order equation can, with modiÞcations, also

be applied to solve a Þrst order system of differential equations.

Higher Order Equations By deÞning new variables, higher order differential

equations can be reduced to a Þrst order system of differential equations. As

an example, consider the problem of converting a nth order linear homogeneous

differential equation

dny

dxn
+ a1

dn−1y
dxn−1

+ a2
dn−2y
dxn−2

+ · · ·+ an−1 dy
dx
+ any = 0 (8.4)

to a vector representation. To convert this equation to vector form we deÞne

new variables. DeÞne the vector quantities

!y =col(y1, y2, y3, · · · , yn) = col
!
y,
dy

dx
,
d2y

dx2
, · · · , d

n−1y
dxn−1

"
!f(x,!y) =A!y,

where A =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
−an −an−1 −an−2 −an−3 · · · −a2 −a1


.

(8.5)

Observe that the linear nth order differential equation (8.4) can now be repre-

sented in the form of equation (8.3). In this way higher order linear ordinary

differential equations can be represented as a Þrst order vector system of differ-

ential equations.

Numerical Solution

In our study of the scalar initial value problem (8.1) it is assumed that f(x, y)

and its partial derivative fy both exist and are continuous in a rectangular region

305

about a point (x0, y0). If these conditions are satisÞed, then theoretically there

exists a unique solution of the initial value problem (8.1) which is a continuous

curve y = y(x), which passes through the point (x0, y0) and satisÞes the differential

equation. In contrast to the solution being represented by a continuous function

y = y(x), the numerical solution to the initial value problem (8.1) is represented by

a set of data points (xi, yi) for i = 0, 1, 2, . . . , n where yi is an approximation to the

true solution y(xi).We shall investigate various methods for constructing the data

points (xi, yi), for i = 1, 2, . . . , n which approximate the true solution. This data set

is then called a numerical solution to the given initial value problem. The given

rule or technique used to obtain the numerical solution is called a numerical

method or algorithm. There are many numerical methods for solving ordinary

differential equations. In this chapter we will consider only a select few of the

more popular methods. The numerical methods considered can be classiÞed as

either single-step methods or multi-step methods. We begin our introduction to

numerical methods for ordinary differential equations by considering single-step

methods.

Single Step Methods

From calculus a function y = y(x), which possesses derivatives of all orders,

can be expanded in a Taylor series about a point x = x0. The Taylor series

expansion has the form

y(x0 + h) = y(x0) + y
"(x0)h+ y""(x0)

h2

2!
+ . . .+ y(n)(x0)

hn

n!
+Rn, (8.6)

where Rn is a remainder term. If the (n + 1)st derivative of y is bounded such

that |y(n+1)(x)| < K for x ∈ (x0, x0 + h), then we can say that the remainder term
satisÞes

Rn = y
(n+1)(ξ)

hn+1

(n+ 1)!
= O(hn+1) (8.7)

with ξ lying somewhere between x0 and x0 + h. We can use the Taylor series

expansion to derive many numerical methods for solving initial value problems.

Example 8-1. Euler�s Method (First-order Taylor series method)

Consider the speciÞc initial value problem to solve

y"(x) =
dy

dx
= f(x, y) = x+ y, y(0) = 1, 0 ≤ x ≤ 1. (8.8)

306

We use the Þrst and second term of the Taylor series expansion to approximate

the value of the solution y at a nearby point x0 + h. We calculate the slope of

the curve at the initial point (x0, y0) directly from the given differential equation

and Þnd y"(x0) = f(x0, y0) = x0 + y0 = 1. We then select a step size h, and use the

value y1 = y(x1) = y(x0 + h) as an approximate value for the true solution. This

gives y1 = y(x0 + h) = y(x0) + y"(x0)h+O(h2), where the error of the approximation

is of order h2. Letting h = 0.1 and substituting in the values for x0 and y0 we Þnd

y1 = 1.1 at x1 = 0.1. If we repeat this step-by-step process with (x1, y1) as the new

initial point, we obtain the algorithm illustrated in Þgure 8-1, which is called

Euler�s method or a Þrst-order Taylor series method. Notice the algorithm in

Þgure 8-1 is a single-step method. That is, if we know the approximate value ym
of the solution curve y(x) at x = xm, then from the point (xm, ym) we can take a

single-step to the next approximating value (xm+1, ym+1), where

xm+1 = xm + h and ym+1 = ym + y
"
mh+O(h

2). (8.9)

Figure 8-1 Flowchart for Euler�s method for
dy

dx
= f(x, y), y(x0) = y0.

307

Applying the Euler method single step algorithm illustrated in Þgure 8-1 to

the initial value problem (8.8) and using a step size of h = 0.1, we obtain the

numerical values in table 8.1. The fourth column in this table gives the exact

solution for comparison purposes. Analysis of the error term associated with the

Euler method is considered in the exercises at the end of this chapter.

Table 8.1

Numerical Results for Euler�s method applied to

dy

dx
= x+ y, y(0) = 1, h = 0.1

x y(x) y"(x) y(x) = 2ex − x− 1 % error

0.0 1.000 1.000 1.000 0.00

0.1 1.100 1.200 1.110 0.93

0.2 1.220 1.420 1.243 1.84

0.3 1.362 1.662 1.400 2.69

0.4 1.528 1.928 1.584 3.51

0.5 1.721 2.221 1.797 4.25

0.6 1.943 2.543 2.044 4.95

0.7 2.197 2.897 2.328 5.61

0.8 2.487 3.287 2.651 6.19

0.9 2.816 3.716 3.019 6.73

1.0 3.187 4.187 3.437 7.26

Taylor Series Method

Other numerical methods for solving differential equations can be developed

from the Taylor series equation (8.6). If we retain the Þrst (m+ 1) terms in the

Taylor series expansion given by equation (8.6), one can write

y(x0 + h) = y(x0) + hTm(x0, y0, h) +Rm (8.10)

with Tm = Tm(x0, y0, h) = y
"(x0) + y""(x0)

h

2!
+ . . .+ y(m)(x0)

hm−1

m!
(8.11)

and Rm = y(m+1)(ξ)
hm+1

(m+ 1)!
= O(hm+1) representing the error term of the approxi-

mation. Equation (8.10) represents an mth-order Taylor series approximation to

the value y1 = y(x0 + h). In order to use the above formula, it is necessary for us

to obtain the various derivative terms y(k)(x0), k = 1, 2, 3, . . . ,m. These derivatives

308

may be computed by differentiating the given differential equation (8.1) using

the chain rule for differentiation. The Þrst couple of derivatives are

y"(x0) =f
(x0,y0)

y""(x0) =fx + fyf
(x0,y0)

y"""(x0) =fxx + 2fxyf + fxfy + fyyf2 + f2y f
(x0,y0)

y(iv)(x0) =
d

dx
y"""(x)

(x0,y0)

(8.12)

Higher derivatives become more difficult to calculate if f = f(x, y) is a complicated

expression. In equation (8.12) the subscripts denote partial derivatives. For

example, fx = ∂f
∂x , fxx =

∂2f
∂x2 , fxy =

∂2f
∂x∂y , etc. Of course the larger the value of m in

the Taylor series expansion (8.10) (8.11), the more work is involved in calculating

these higher derivatives. In most applications the Taylor series method should

be used only when the derivatives of f = f(x, y) are easily obtainable.

Example 8-2. (Second-order Taylor series method)

A second-order Taylor series algorithm for approximating solutions to the

initial value problem (8.1) is given in Þgure 8-2. Applying the second-order

Taylor series algorithm to the initial value problem (8.8) we obtain the results in

table 8.2. Compare the results of table 8.1 with the entries in table 8.2 to see the

difference in the errors between a Þrst- and second-order Taylor series method.

Table 8.2

Numerical Results for second-order Taylor series method applied to

dy

dx
= x+ y, y(0) = 1, h = 0.1

x y(x) y"(x) y""(x) y(x) = 2ex − x− 1 % error

0.0 1.000 1.000 2.000 1.000 0.000

0.1 1.100 1.210 2.210 1.110 0.031

0.2 1.242 1.442 2.442 1.243 0.061

0.3 1.398 1.698 2.698 1.400 0.089

0.4 1.582 1.982 2.982 1.584 0.117

0.5 1.795 2.295 3.295 1.797 0.142

0.6 2.041 2.641 3.641 2.044 0.165

0.7 2.323 3.023 4.023 2.328 0.187

0.8 2.646 3.446 4.446 2.651 0.298

0.9 3.012 3.912 4.912 3.019 0.227

1.0 3.428 4.428 5.428 3.437 0.244

309

Figure 8-2 Flowchart for second-order Taylor series method

for numerical solution of
dy

dx
= f(x, y), y(x0) = y0.

Example 8-3. (Fourth-order Taylor series method)

Set up a fourth-order Taylor series algorithm to solve the initial value prob-

lem

y"(x) =
dy

dx
= f(x, y) = x+ y, y(0) = 1, 0 ≤ x ≤ 1.

Solution: We differentiate the given differential equation to obtain derivatives

through order four. There results the following equations:

y"(x) = x+ y

y""(x) = 1 + y" = 1 + x+ y

y"""(x) = 1 + y" = 1 + x+ y

y(iv)(x) = 1 + y" = 1 + x+ y

Substituting the above derivatives into the Taylor series gives us the fourth-order

310

single step approximation

x1 = x0 + h y1 = y(x0 + h) = y0 + hT4,

where y0 = y(x0) and

T4 = (x0 + y0) + (1 + x0 + y0)
h

2!
+ (1 + x0 + y0)

h2

3!
+ (1 + x0 + y0)

h3

4!
.

This gives the fourth-order Taylor series algorithm illustrated in the Þgure 8-3.

Figure 8-3 Flowchart for fourth-order Taylor series method

for numerical solution of
dy

dx
= f(x, y), y(x0) = y0.

Runge-Kutta Methods

There are various types of Runge-Kutta algorithms for the numerical solution

of the initial value problem

y" = f(x, y), y(x0) = y0, x0 ≤ x ≤ xn. (8.13)

311

These methods are single step methods with step size h. A p-stage Runge-Kutta

algorithm to solve the initial value problem (8.13) is a stepping procedure from

a point (xi, yi) to the next point (xi+1, yi+1) given by

xi+1 = xi + h

yi+1 = yi + ω1k1 + ω2k2 + ω3k3 + . . .+ ωpkp,
(8.14)

where ω1, ω2, . . . ,ωp are called weighting constants and

k1 = hf(xi, yi)

k2 = hf(xi + c2h, yi + a21k1)

k3 = hf(xi + c3h, yi + a31k1 + a32k2)

. . .

kp = hf(xi + cph, yi + ap1k1 + ap2k2 + . . .+ ap,p−1kp−1),

(8.15)

are scaled slope calculations at speciÞed points. In the equation (8.15) the quan-

tities c2, c3, . . . , cp, a21, a31, a32, . . . are given constants. The ki, i = 1, . . . , p values

require p function evaluations for the slope f(x, y) to be evaluated at speciÞed

(x, y) points. In general, a p-stage Runge-Kutta method is a stepping method,

with step size h, which requires p function evaluations for each step taken.

There is an array notation for representing Runge-Kutta methods which was

introduced by J.C. Butcher around 1965. The array is called a Butcher array

and has the form

c1 a11 a12 · · · a1p

c2 a21 a22 · · · a2p
...

...
...

. . .
...

cp ap1 ap2 · · · app

ω1 ω2 · · · ωp

!c A

!ω
(8.16)

where !c = (c1, c2, . . . , cp)
T and !ω = (ω1,ω2, . . . ,ωp) are vectors and A = (aij) for

i = 1, . . . , p and j = 1, . . . , p is a p×p matrix array. The Runge-Kutta method given

312

by equations (8.14) and (8.15) is denoted by the Butcher array

0 0

c2 a21 0

c3 a31 a32 0

c4 a41 a42 a43 0

...
...

...
...

...
. . .

cp ap1 ap2 ap3 · · · ap,p−1 0

ω1 ω2 ω3 · · · ωp−1 ωp

(8.17)

where the matrix A is lower triangular. Whenever the matrix A is strictly lower

triangular, the Runge-Kutta method is called an explicit stepping method. If

the matrix A is not lower triangular, then the Runge-Kutta method is called an

implicit stepping method.

The p-stage Runge-Kutta method requires that the weighting constants

ω1, ω2, . . . ,ωp and the constants

c2 a21

c3 a31 a32

c4 a41 a42 a43

. . .

cp ap1 ap2 ap3 . . . ap,p−1,

are chosen such that yn+1 of equation (8.14) agrees with a Taylor series expansion

through some order. It is known that if equation (8.14) agrees with a Taylor

series expansion of order m, for m = 2, 3 or 4, then p = m and for m > 4 it is known

that p > m. It is also known that for consistency it is required that

ci =
i−1)
j=1

aij , for i = 2, 3, . . . , p. (8.18)

Note that p-function evaluations are required if one uses a p-stage Runge-Kutta

method. The Runge-Kutta methods for p = 2, 3, 4 have the same order of accuracy

as the Taylor series methods of order m = 2, 3, 4 and they have the advantage

that higher ordered derivative terms do not have to be calculated. In order to

illustrate the general character of Runge-Kutta methods we begin by developing

second-order Runge-Kutta methods in detail.

