
Bc. Jaroslav Zůda

Statistical physics and Thermodynamics
Problem 1: Consider a system consisting of two particles, each ow which

can be in any one of three quantum states of respective energies, 0, ǫ, 3ǫ. The
system is in contact with a heat reservoir at temperature T .

1. Write an expression for the particion function Z if the particles obey clas-
sical MB statistics and are considered distinguishable.

2. What is Z if the particles obey BE statistics?

3. What is Z if the particles obey FD statistics?

The partition function can be write as

Z =
∑

n

e−
En
T .

In the next pictures there are all possible states with respective energies.
Then it is easy to find the partition function.
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For MB statistics and distinguishable particles I have to count all states
in the picture. Finally I have

ZMB = e
− 0

T + 2e−
ǫ
T + e−

2ǫ
T + 2e−

3ǫ
T + 2e−

4ǫ
T + e−

6ǫ
T

The partition function in BE statistics is similar to partition function in
MB statistics, but particles are not distinguishable here. It means that total
energy levels, which were counted twice, are counted only once here.

ZBE = e
− 0

T + e−
ǫ
T + e−

2ǫ
T + e−

3ǫ
T + e−

4ǫ
T + e−

6ǫ
T

In fermions case, there should be only one particle in each energy level,
so the states where are two particles are forbidden. Partition function is then

ZFD = e
− ǫ

T + e−
3ǫ
T + e−

4ǫ
T
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Problem 2: A simple harmonic one-dimensional oscillator has energy levels
given by En = (n+

1
2
)~ω, where ω is the characteristic frequency of the oscillator

and the quantum number n can assume the possible integral values n = 0, 1, 2, ....
Suppose that such an oscillator is in thermal contact with a heat reservoir at
temperature T .

1. Find the ratio of the probability of the oscillator being in the first excited
state to the probability of its being in the ground state.

2. Find the mean energy of the oscillator as a function of the temperature T .

Basic assumption: In equilibrium, all states are equally probable. This
means that entropy S is maximal. From definition I have

S = lnΓ(E),

where Γ(E) is density of states. There should be Boltzmann constant, but I
can choose its value.
There is a heat reservoir and our system, so density of states in our system

is
Γ(E1) = Γ1(E1)Γ2(E0 − E1).

Entropy is
S = lnΓ1(E1) + ln Γ2(E0 −E1).

I know that entropy should be maximal in equilibrium:

dS

dE
= 0⇒ dS1

dE1
− dS2
dE1

= 0⇒ dS1
dE1

=
dS2
dE1

=
1

T

In equilibrium, the temperatures of heat reservoir and our system are equal.
Now I have necessary theorems to calculate probability to find system in

the state with energy En.

Γ′(E0 −Er) = eS
′(E0−Er) ∼ eS

′(E0)−
∂S

∂E0
Er = Ke−

Er
T

⇒ Pr = Ce−
Er
T ,

where

∑

r

Pr = 1⇒ C =
1

∑

k e
−

Ek
T

=
1

Z
,



where Z is the partition function. Now I can compute the ratio of probability
of being in the first excited state (n = 1) to the probability of being in the
ground state (n = 0):

P1

P0
=

Ce−
(1+ 12)~ω

T

Ce−
(0+ 12)~ω

T

= e
~ω
T

For the mean value of any quantity X holds the equation

〈X〉 =
∑

r

XrPr

I will compute the mean value of energy:

〈E〉 =
∑

r

ErCe
−Er

T

=
T 2

Z

d

dT

∑

r

e−
Er
T =

T 2

Z

dZ

dT

= T 2
d lnZ

dT

Definition of free energy F : Z = e−
F
T ⇒ F = −T lnZ The free energy can

be used to compute the mean value of energy in easier way.

〈E〉 = −T 2 d
dT

(
F

T

)

= F − T
dF

dT

I will use this equation later, because I have to find the free energy. For this
I will compute the partition function.

Z =

∞∑

r=0

e−
(r+12)~ω

T = e−
~ω
2T

∞∑

r=0

e−
r~ω
T

=
e−

~ω
2T

1− e− ~ω
T

=
1

e
~ω
2T − e− ~ω

2T

=
1

2 sinh ~ω
2T

⇒ F = T ln 2 sinh
~ω

2T

⇒ 〈E〉 = T ln 2 sinh
~ω

2T
− T

(

ln 2 sinh
~ω

2T
+ T
2 cosh ~ω

2T

2 sinh ~ω
2T

(

− ~ω

2T 2

))

=
~ω

2
coth

~ω

2T
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Problem 3: For ideal gases in two dimensions, find

1. The heat capacity at constant area in the high-temperature limit for both
the Fermi and Bose cases.

2. The heat capacity at constant area in the low-temperature limit for the
Fermi case

For quantum ideal gas I have

Z = e−
Ω
T =

∑

r

e−
Er−µNr

T ,

where Ω is Landau potential for systems, where the number of particles N
is not fixed.
I have ideal gas, so the approximation by 1-particle states is applicable.

There can be any number of particles for bosons and maximum of 1 particle
for fermions. For both cases the partition function is different. In this appro-
ximation, each state is specified by saying how many particles are in each of
1-particle levels. The energy of state is given by

Er = n1ǫ1 + n2ǫ2 + . . .

Nr = n1 + n2 + . . . .

Now I can compute the partition function and then Landau potential.

Z =
∑

r

e−
Er−µNr

T =
∑

r

e−
n1ǫ1+n2ǫ2+...−µn1−µn2−...

T

=
∑

r

e−
n1(ǫ1−µ)

T e−
n2(ǫ2−µ)

T . . .

=

∞∨1∑

n1=0

∞∨1∑

n2=0

. . . e−
n1(ǫ1−µ)

T e−
n2(ǫ2−µ)

T . . .

=

∞∏

i=1

∞∨1∑

ni=0

e−
ni(ǫi−µ)

T

=

∞∏

i=1

1

1− e− ǫi−µ

T

for bosons



=
∞∏

i=1

(

1 + e−
ǫi−µ

T

)

for fermions

⇒ ΩB = −T ln
∞∏

i=1

1

1− e− ǫi−µ

T

= T

∞∑

i=1

ln
(

1− e−
ǫi−µ

T

)

ΩF = −T ln
∞∏

i=1

(

1 + e−
ǫi−µ

T

)

= −T
∞∑

i=1

ln
(

1 + e−
ǫi−µ

T

)

⇒ Ω = ±T
∞∑

i=1

ln
(

1∓ e−
ǫi−µ

T

)

The upper signs are for bosons, the lower signs are for fermions.
I use the 1-particle approximation so it is necessary to compute the time

independent Schroedinger equation.

Eψ =
~p2

2m
ψ + V ψ

⇒ 2mE

~2
ψ = −

(
∂2

∂x2
+

∂2

∂y2

)

ψ

⇒ E =
~
2π2

2mL2
(n2x + n

2
y)

=
~
2k2

2m

I will approximate the sum over energies with integral over states. 1 state
is in π2

L2
area, so the density of states is ρ(k) = S

π2
. In the next will be used

V instead of S because of possible collision with entropy, which has same
symbol S.

Ω = ±T
∫

1st quadrant
d2k

V

π2
ln

(

1∓ e−
~
2k2

2m −µ

T

)

= ±T
∫ ∞

0

dkk

∫

1st quadrant
dϕ

V

π2
ln

(

1∓ e−
~
2k2

2m −µ

T

)

= ±T
∫ ∞

0

dk
π

2
k
V

π2
ln

(

1∓ e−
~
2k2

2m −µ

T

)

= ±T V
π

∫ ∞

0

dkk ln

(

1∓ e−
~
2k2

2m −µ

T

)

∣
∣
∣
∣
E =

~
2k2

2m
⇒ dE = ~

2k

m
dk



= ±T V
π

∫ ∞

0

dE
m

~2
ln
(

1∓ e−E−µ
T

)

= ±TV m
π~2

∫ ∞

0

dE ln
(

1∓ e−E−µ
T

)

∣
∣
∣
∣
x =

E

T
⇒ dx = 1

T
dE

= ± T 2Vm

π~2
︸ ︷︷ ︸

C

∫ ∞

0

dx ln

(

1∓ e−x e
µ
T

︸︷︷︸

K

)

= ±C
∫ ∞

0

dx ln
(
1∓Ke−x

)

∣
∣
∣
∣
u = ln

(
1∓Ke−x

)
⇒ u′ =

±Ke−x

1∓Ke−x

|v′ = 1⇒ v = x

= C

(
[
x ln

(
1∓Ke−x

)]∞

0
−
∫ ∞

0

dx
Kxe−x

1∓Ke−x

)

∣
∣
[
x ln

(
1∓Ke−x

)]∞

0
= 0

= −C
∫ ∞

0

dx
x

ex−
µ
T ∓ 1

= −T
2V m

π~2
(B,F )1

(µ

T

)

The equation above is Landau potential for quantum ideal gas. I have to
compute the low and high temperature limits of heat capacity. Heat capacity
is defined as cV = T

(
∂S
∂T

)

V,N
, so I need to compute entropy.

S = −∂Ω
∂T

=
2TVm

π~2
(B,F )1

(µ

T

)

+
T 2V m

π~2
(B,F )0

(µ

T

)(

− µ

T 2

)

=
2TVm

π~2
(B,F )1

(µ

T

)

− Vmµ

π~2
(B,F )0

(µ

T

)

I need to find the chemical potential µ and boson and fermion function. I
will use the number of particles defined with N = −∂Ω

∂µ
.

N =
TVm

π~2
(B,F )0

(µ

T

)

The limit for temperature in the high temperature approximation is infinity
and N

V
→ 0⇒ µ

T
→ −∞.

From class I have

lim
y→−∞

(B,F )N(y) = Γ(N + 1)

(

ey ± e
2y

2N

)



In this case N = 0, so

(B,F )0

(µ

T

)

= Γ(1)

(

e
µ
T ± 1
20
e
2µ
T

)

=
Nπ~

2

TV m

⇒ e µ
T ± e 2µT =

Nπ~
2

TV m

I will use the expansion to the second order.

ey = x+ f(x)

⇒ x = x+ f(x)± (x+ f(x))2

⇒ ∓x2 = f(x)(1± 2x)

⇒ f(x) = ∓ x2

1± 2x ∼ ∓x2

⇒ ey = x∓ x2

⇒ e µ
T =

Nπ~
2

TVm
∓
(
Nπ~

2

TVm

)2

⇒ (B,F )1
(µ

T

)

=
Nπ~

2

TVm
∓
(
Nπ~

2

TVm

)2

± 1
2

(

Nπ~
2

TV m
∓
(
Nπ~

2

TVm

)2
)2

In the next will be µ computed. I do not have to compute (B,F )0 because
after comparing the equation for entropy to equation for number of particles
we can see that the second part of the entropy can be written as Nµ

T
.

ey = x∓ x2

⇒ y = ln
(
x∓ x2

)

= ln x+ ln (1∓ x)

= ln x∓ x

⇒ µ = T

(

ln
Nπ~

2

TV m
∓ Nπ~

2

TVm

)

With these equations the entropy has the following expression:

S =
2TV m

π~2




Nπ~

2

TVm
∓
(
Nπ~

2

TV m

)2

± 1
2

(

Nπ~
2

TVm
∓
(
Nπ~

2

TV m

)2
)2




−N
T
T

(

ln
Nπ~

2

TVm
∓ Nπ~

2

TV m

)



=
2TV mNπ~

2

TVmπ~2

(

1∓ Nπ~
2

TVm
± Nπ~

2

2TVm

)

−N ln
Nπ~

2

V m
︸ ︷︷ ︸

K

+N lnT ± N2π~
2

TVm

= 2N

(

1∓ Nπ~
2

2TVm

)

−K +N lnT ± N2π~
2

2TVm

= 2N −K +N lnT ∓ N2π~
2

2TVm

⇒ cV = T

(
N

T
± N2π~

2

2T 2V m

)

= N ± N2π~
2

2TVm
= N

(

1± Nπ~
2

2TVm

)

The result is different from the classical model due to quantum corrections.
The low temperature approximation will be computed only for fermions.

In this case T → 0 ∧ N
V
→ ∞ ⇒ µ

T
→ ∞. From class I have

lim
y→∞

Fn(y) =
yn+1

n+ 1
+ 2nyn−1F1(0)

F1(0) =
1

2
Γ(2)ζ(2) =

π2

12
⇒ F0(y) = y

F1(y) =
y2

2
+
π2

6

⇒ F0

(µ

T

)

=
µ

T

=
Nπ~

2

TVm

⇒ µ =
Nπ~

2

V m

F1

(µ

T

)

=
1

2

(
Nπ~

2

TV m

)2

+
π2

6

⇒ S =
2TVm

π~2

(

1

2

(
Nπ~

2

TV m

)2

+
π2

6

)

− Vm

π~2

Nπ~
2

Vm

Nπ~2

V m

T

=
TVmN2π2~4

π~2T 2V 2m2
+
2TVmπ2

6π~2
− N2π~

2

TVm

=
N2π~

2

TVm
+
TVmπ

3~2
− N2π~

2

TVm

=
TVmπ

3~2



⇒ cV = T

(
V mπ

3~2

)

=
TVmπ

3~2

This is the low temperature limit for Fermi gas.
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Problem 4: Find the high- and low-temperature limits of the heat capacity
of a Debye solid in two dimensions.
In the Debye model the states are influenced by all atoms. Low lying ex-

citations are collective oscilations of the crystal and they are called phonons.
The partition function can be then write as

Z = e−
F
T =

∑

1st state

(

e−
E1
T

)n1 ∑

2nd state

(

e−
E2
T

)n2

. . .
∑

2N

(

e−
E3N

T

)n2N

There are 2N sums because the problem is in two dimensions. Now is the
problem to find the energies of oscillations. I will use mechanical model with
springs. Lagrangian of this problem is

L =
∑

i

(
1

2
mẋ2i −

1

2
k (xi+1 − xi)

2

)

⇒ mẍi = k (xi+1 − xi) + k (xi − xi−1)

Assumption of solution: xi(t) = A sin
(

i
N
2πr − ωrt

)
, where r denotes the

mode of the oscillation.

xi+1 − xi = A

(

sin

(
i+ 1

N
2πr − ωrt

)

− sin
(
i

N
2πr − ωrt

))

= A

(

sin

(
i

N
2πr − ωrt

)

+
2πr

N
cos

(
i

N
2πr − ωrt

))

−A sin
(
i

N
2πr − ωrt

)

= A
2πr

N
cos

(
i

N
2πr − ωrt

)

Analogically for xi − xi−1 I have A
2πr
N
cos
(

i−1
N
2πr − ωrt

)
. Then the force

equation is

−mω2rxi = Ak
2πr

N

(

cos

(
i− 1
N
2πr − ωrt

)

− cos
(
i

N
2πr − ωrt

))

= Ak
2πr

N

(

cos

(
i

N
2πr − ωrt

)

−
(

−2πr
N

)

sin

(
i

N
2πr − ωrt

))

−Ak2πr
N
cos

(
i

N
2πr − ωrt

)



= Ak

(
2πr

N

)2

sin

(
i

N
2πr − ωrt

)

⇒ mω2r = k

(
2πr

N

)2

⇒ ωr =

√

k

m

2πr

N

=

√

a2k

m

2π

L
r =

√

a2k

m
kr

The energy of the state is then

Er = ~ωr

⇒ Z =
∞∑

n1=0

(

e−
~ω1
T

)n1
∞∑

n2=0

(

e−
~ω2
T

)n2

. . .

=
1

1− e− ~ω1
T

1

1− e− ~ω2
T

. . .
1

1− e−
~ω2N

T

⇒ F = T ln
(

1− e−
~ω1
T

)(

1− e−
~ω2
T

)

. . .

= T

2N∑

n=1

ln
(

1− e− ~ωn
T

)

= T

∫ kmax

0

d2~kρ(k) ln
(

1− e− ~kv
T

)

The density of states is ρ(k) =
(

L
2π

)2
. Then for free energy I have

F = T

∫ kmax

0

d2~k

(
L

2π

)2

ln
(

1− e− ~kv
T

)

= T

∫ kmax

0

dkk2π
L2

4π2
ln
(

1− e− ~kv
T

)

|ω = vk ⇒ dω = vdk

=
TL2

2π

∫ ωmax

0

dω
1

v2
ω ln

(

1− e− ~ω
T

)

∣
∣
∣
∣

∫ ωD

0

L2ω

2πv2
dω =

V ω2D
4πv2

= N

∣
∣
∣
∣
∣
⇒ ωD = 2v

√

πN

V

=
TV

2πv2

∫ ωD

0

dωω ln
(

1− e− ~ω
T

)



∣
∣
∣
∣
x =

~ω

T
⇒ dx = ~

T
dω

=
TV

2πv2
T

~

T

~

∫ ~ωD
T

0

dxx ln
(
1− e−x

)

=
T 3V

2πv2~2

∫ ~ωD
T

0

dxx ln
(
1− e−x

)

∣
∣
∣
∣
u = ln

(
1− e−x

)
⇒ u′ =

e−x

1− e−x

∣
∣
∣
∣
v′ = x⇒ v =

x2

2

=
T 3V

2πv2~2





[
x2

2
ln
(
1− e−x

)
]TD

T

0

− 1
2

∫ TD
T

0

x2e−x

1− e−x





=
T 3V

4πv2~2

(

T 2D
T 2
ln
(

1− e−
TD
T

)

−
∫ TD

T

0

dx
x2

ex − 1

)

=
TT 2DV

4πv2~2

(

ln
(

1− e−
TD
T

)

− T 2

T 2D

∫ TD
T

0

dx
x2

ex − 1

)

∣
∣
∣
∣
T 2D = ~

2ω2D = ~
2 4v

2πN

V

=
TV

4πv2~2
~
24v

2πN

V

(

ln
(

1− e−
TD
T

)

− T 2

T 2D

∫ TD
T

0

dx
x2

ex − 1

)

= NT

(

ln
(

1− e−
TD
T

)

− T 2

T 2D

∫ TD
T

0

dx
x2

ex − 1

)

This is the free energy for Debye solid in two dimensions. Now I will compute
the high-temperature limit of heat capacity.

lim
T→∞

F = NT

(

ln

(

1−
(

1− TD

T

))

− T 2

T 2D

∫ TD
T

0

dxx

)

= NT

(

ln
TD

T
− 1
2

)

= NT ln
TD

T
− 1
2
NT

⇒ S = −∂F
∂T

=
N

2
−N ln

TD

T
+NT

T

TD

TD

T 2



=
N

2
+NTD −N ln

TD

T

⇒ cV = T
∂S

∂T
= NT

T

TD

TD

T 2
= N

Now I will compute the low-temperature limit of heat capacity.

lim
T→0

F = NT

(

−e−
TD
T − T 2

T 2D
B2(0)

)

= −NT e−
TD
T − NT 3

T 2D
B2(0)

|BN(0) = Γ(N + 1)ζ(N + 1)⇒ B2(0) = 2ζ(3)

= −NT e−
TD
T − 2NT

3

T 2D
ζ(3)

⇒ S = Ne−
TD
T +NT e−

TD
T
TD

T 2
+
6NT 2ζ(3)

T 2D

= Ne−
TD
T +N

TD

T
e−

TD
T +

6NT 2ζ(3)

T 2D

⇒ cV = T

(
NTD

T 2
e−

TD
T − NTD

T 2
e−

TD
T +

NT 2D
T 3
e−

TD
T +

12NTζ(3)

T 2D

)

=
NT 2D
T 2
e−

TD
T +

12NT 2ζ(3)

T 2D
≈ 12NT

2ζ(3)

T 2D
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Problem 5: A system consist of N very weakly interacting particles at a
temperature T sufficiently high so that classical statistical mechanics is applica-
ble. Each particle has mass m and is free to perform one-dimensional oscillations
about its equilibrium position. Calculate the heat capacity of this system or par-
ticles at this temperature in each of the following cases:

1. The force effective in restoring each particle to its equilibrium position is
proportional to its displacement x from this position.

2. The restoring force is proportional to x2.

The energy of the oscillators is given by equation

E =
p2

2m
+ U,

where U is the potential energy given by equation

U =

∫

Fds

In this problem F is the force effective in restoring particles and is proporti-
onal to x, respectively x2. Then the potential energy is

U1 =
1

2
αx2

U2 =
1

3
βx3

and total energy

E1 =
p2

2m
+
αx2

2

E2 =
p2

2m
+
βx3

3

The partition function for the first problem is

Z = e−
F
T =

∑

r

e−
Er
T



=

∫
dpidxi

(2π~)N
e−

P

i

 

p2i
2m+

αx2i
2

!

T

=
N∏

i=1

∫
dpidxi

2π~
e−

p2i
2m+

αx2i
2

T

=

N∏

i=1

1

2π~

∫

dpie
−

p2i
2mT

∫

dxie
−αx2

2T

=

(
1

2π~

∫

dpe−
p2

2mT

∫

dxe−
αx2

2T

)N

=

(

1

2π~

√
2πmT

√

2πT

α

)N

=

(
2πT

√
m

2π~
√
α

)N

=

(
T

~

√
m

α

)N

⇒ F = −NT ln T
~

√
m

α

= −NT lnT +NT ln ~

√
α

m

⇒ S = −∂F
∂T

= N lnT +N −N ln ~

√
α

m

⇒ cV = T
∂S

∂T
= T

N

T
= N

This is the heat capacity for the system where the restoring force is propor-
tional to x.
The partition function for the second problem is

Z = e−
F
T =

∑

r

e−
Er
T

=

∫
dpidxi

(2π~)N
e−

P

i

 

p2i
2m+

βx3i
3

!

T

=
N∏

i=1

∫
dpidxi

2π~
e−

p2i
2m+

βx3i
3

T



=
N∏

i=1

1

2π~

∫

dpie
−

p2i
2mT

∫

dxie
−βx3

3T

=

(
1

2π~

∫

dpe−
p2

2mT

∫

dxe−
βx3

3T

)N

∣
∣
∣
∣

∫ ∞

0

dxe−αxs

=
1

s
α− 1

sΓ

(
1

s

)

=

(

1

2π~

√
2πmT

2

3

(
3T

β

) 1
3

Γ

(
1

3

))N

=

(

T
5
6m

1
2Γ
(
1
3

)

3
2
3 (2π~2)

1
2 β

1
3

)N

⇒ F = −NT lnT 5
6 −NT ln

m
1
2Γ
(
1
3

)

3
2
3 (2π~2)

1
2 β

1
3

︸ ︷︷ ︸

C

= −5
6
NT lnT −NTC

⇒ S =
5

6
N lnT +

5

6
N +NC

⇒ cV =
5N

6

This is the heat capacity for the system where the restoring force is propor-
tional to x2.
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Problem 6: Assume the following highly simplified model for calculating the
specific heat of graphite, which has a highly anisotropic crystalline structure. Each
carbom atom in this structure can be regarded as performing simple harmonic
oscillations in three dimensions. The restoring forces in directions parallel to a
layer are very large; hence the natural frequencies of oscillations in the x and y
directions lying within the plane of a layer are both equal to a value ω‖ which is
so large that ~ω‖ is much greater than the temperature corresponding to 300K.
On the other hand, the restoring force perpendicular to a layer is quite small;
hence the frequency of oscillation ω⊥ of an atom in the z direction perpendicular
to a layer is so small that ~ω⊥ is much smaller than the energy corresponding to
300K. On the basis of this model, what is the molar specific heat (at constant
volume) of graphite at 300K.
According to the formulation of the problem I will use the Einstein quan-

tum model. This model assume that all atoms perform harmonic oscillations
at the same frequency.
The energy of quantum oscillator is

En =

(

n +
1

2

)

~ω

⇒
∑

n

e−
En
T =

∞∑

n=0

e−
(n+12)~ω

T

= e−
~ω
2T

∞∑

n=0

(

e−
~ω
T

)n

= e−
~ω
2T

1

1− e− ~ω
T

=
1

2 sinh ~ω
2T

The partition function of the whole system in one dimension is

Z =

N∏

i=1

1

2 sinh ~ωi

2T

=

(

1

2 sinh ~ω
2T

)N



There are two different frequencies of oscillations so then

Z =

(

1

2 sinh
~ω‖

2T

)2N (

1

2 sinh ~ω⊥

2T

)N

⇒ F = 2NT ln 2 sinh
~ω‖

2T
+NT ln 2 sinh

~ω⊥

2T

⇒ S = −2N ln 2 sinh ~ω‖

2T
+ 2NT

~ω‖ coth
~ω‖

2T

2T 2

−N ln 2 sinh ~ω⊥

2T
+NT

~ω⊥ coth
~ω⊥

2T

2T 2

⇒ cV = 2NT
~ω‖ coth

~ω‖

2T

2T 2
−NT

~ω‖ coth
~ω‖

2T

T 2
+NT

~ω‖

T sinh2
~ω‖

2T

~ω‖

2T 2

+NT
~ω⊥ coth

~ω⊥

2T

2T 2
−NT

~ω⊥ coth
~ω⊥

2T

2T 2
+NT

~ω⊥

2T sinh2 ~ω⊥

2T

~ω⊥

2T 2

=
N~

2ω2‖

2T 2 sinh2
~ω‖

2T

+
N~

2ω2⊥

4T 2 sinh2 ~ω⊥

2T

= N



2

(

~ω‖

2T sinh
~ω‖

2T

)2

+

(

~ω⊥

2T sinh ~ω⊥

2T

)2




∣
∣
∣
∣
α =

~ω‖

2T
≫ 1

∣
∣
∣
∣
β =

~ω⊥

2T
≪ 1

= N

(

2
( α

sinhα

)2

+

(
β

sinh β

)2
)

⇒ CV = 2
( α

sinhα

)2

+

(
β

sinh β

)2

This is the general equation for molar specific heat. Now I will compute
the low and high temperature approximations. The high temperature appro-
ximation is applicable when β ≤ 1 and the low temperature is for α ≥ 1.
The low temperature approximation:

α

sinhα
=

2α

eα − e−α

=
2αe−α

1− e−2α



∣
∣α→ ∞ ⇒ e−2α → 0

= 2αe−α

The high temperature approximation:

β

sinh β
=

β

β + β3

6
+ . . .

=
1

1 + β2

6

The molar specific heat of graphite is then

CV = 2
(
2αe−α

)2
+

1
(

1 + β2

6

)2

= 8α2e−2α +
1

1 + β2

3

= 8

(
~ω‖

2T

)2

e−2
~ω‖
2T +

1

1 +

“

~ω⊥
2T

”2

3

= 2
~
2ω2‖

T 2
e−

~ω‖
T +

1

1 +
~2ω2⊥
12T 2
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Problem 7: Electromagnetic radiation at temperature Ti fills a cavity of
volume V . If the volume of the thermally insulated cavity is expanded quasi
statically to a volume 8V , what is the final temperature Tf?
The basic assumption: In equilibrium, all states are equally probable. If

the system is expanded quasi statically, it means that the system is in equi-
librium in every time of the change. The system is also thermally insulated,
so there is no change of heat. It also means that there is no change of entropy.
Now I will compute the entrophy for electromagnetic radiation using the

equation for Landau potential of bosons from Problem 3. The dispersion
relation in the foton case is E = ~kc.

Ω = T

∞∑

i=1

ln
(

1− e−
ǫi−µ

T

)

= T

∫

1stoctant

d3k
V

π3
ln
(

1− e− ~kc−µ
T

)

= T

∫

dkk2
V

2π2
ln
(

1− e− ~kc−µ
T

)

|E = ~kc⇒ dE = ~cdk

=
TV

2π2

∫ ∞

0

1

~c
dE

E2

~2c2
ln
(

1− e−E−µ
T

)

=
TV

2π2~3c3

∫ ∞

0

dEE2 ln
(

1− e−E−µ
T

)

∣
∣
∣
∣
x =

E

T
⇒ dx = dE

T

=
TV

2π2~3c3

∫ ∞

0

TdxT 2x2 ln
(

1− e−x+ µ
T

)

=
V T 4

2π2~3c3

∫ ∞

0

dxx2 ln
(

1− e−x+ µ
T

)

∣
∣
∣
∣
u = ln

(

1− e−x+ µ
T

)

⇒ u′ =
1

ex−
µ
T − 1

∣
∣
∣
∣
v′ = x2 ⇒ v =

x3

3

=
V T 4

2π2~3c3

([
x3

3
ln
(

1− e−x+ µ
T

)]∞

0

− 1
3

∫ ∞

0

dx
x3

ex−
µ
T − 1

)



= − V T 4

6π2~3c3
B3

(µ

T

)

⇒ S =
2V T 3

3π2~3c3
B3

(µ

T

)

− V T 2µ

2π2~3c3
B2

(µ

T

)

This is the general equation for ultrarelativistic bosons. The system is in
equilibrium and then the free energy is minimal.

∂F

∂N
= 0 ⇒ µ = 0

The the entropy is

S =
2V T 3

3π2~3c3
B3 (0)

As was said above, the entropy is constant during the quasi statical pro-
cess.

V T 3 = K

⇒ V1T
3
1 = V2T

3
2

⇒ Tf = Ti
3

√

Vi

Vf

= Ti
3

√
Vi

8Vi

=
1

2
Ti
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Problem 8: Use the Debye approximation to find the equation of state for
a solid; i. e. find the pressure p as a function of V and T . What are the limiting
cases valid when T ≪ θD and when T ≫ θD? Express your answer in terms of
the quantity

γ ≡ − V

θD

dθD

dV
.

Assume that γ is a constant, independent of temperature. (It is called the Grüne-
isen constant.) Show that the coefficient of thermal expansion α is then related
to γ by the relation

α =
1

V

(
∂V

∂T

)

p

= κ

(
∂p

∂T

)

V

= κγ
cV

V
,

where cV is the heat capacity of the solid and κ is the compressibility.
As was derived in Problem 4, the free energy is

F = T ln
(

1− e−
~ω1
T

)

ln
(

1− e−
~ω2
T

)

. . .

= T

3N∑

i=1

ln
(

1− e−
~ωi
T

)

= T

∫ kmax

0

d3kρ(k) ln
(

1− e− ~kv
T

)

There are some changes caused by adding third dimmension. The density of

states is then ρ(k) =
(

L
2π

)3
. Then I have

F = T

∫ kmax

0

dkk24π
V

8π3
ln
(

1− e− ~kv
T

)

=
TV

2π2

∫ kmax

0

dkk2 ln
(

1− e− ~kv
T

)

|k = ωv ⇒ dk = vdω

=
3TV

2π2

∫ ωmax

0

1

v
dω

ω2

v2
ln
(

1− e− ~ω
T

)

=
3TV

2π2v3

∫ ωmax

0

dωω2 ln
(

1− e− ~ω
T

)

∣
∣
∣
∣

∫ ωmax

0

dω
ω2V

2π2v3
= N



∣
∣
∣
∣
∣
⇒ V ω3

6π2v3
= N ⇒ ωmax = v

3

√

6Nπ2

V
= ωD

∣
∣
∣
∣
x =

~ω

T
⇒ dx = ~

T
dω

=
3TV

2π2v3

∫ TD
T

0

T

~
dx
T 2x2

~2
ln
(
1− e−x

)

=
3V T 4

2π2~3v3

∫ TD
T

0

dxx2 ln
(
1− e−x

)

∣
∣
∣
∣
u = ln

(
1− e−x

)
⇒ u′ =

e−x

1− e−x
=

1

ex − 1
∣
∣
∣
∣
v′ = x2 ⇒ v =

x3

3

=
3V T 4

2π2~3v3





[
x3

3
ln
(
1− e−x

)
]TD

T

0

− 1
3

∫ TD
T

0

dx
x3

ex − 1





=
V TT 3D
2π2~3v3

(

ln
(

1− e−
TD
T

)

− T 3

T 3D

∫ TD
T

0

dx
x3

ex − 1

)

=
V T~

3v36Nπ2

V 2π2v3~3

(

ln
(

1− e−
TD
T

)

− T 3

T 3D

∫ TD
T

0

dx
x3

ex − 1

)

= 3NT

(

ln
(

1− e−
TD
T

)

− T 3

T 3D

∫ TD
T

0

dx
x3

ex − 1

)

This is the free energy of Debye solid. The pressure is then

p = −∂F
∂V
= − ∂F

∂TD

∂TD

∂V

∂F

∂TD

= 3NT




1

T
(

e
TD
T − 1

) +
3T 3

T 4D

∫ TD
T

0

dx
x3

ex − 1 −
T 3

T 3D

T 3D
T 4

1

e
TD
T − 1





=
9NT 4

T 4D

∫ TD
T

0

dx
x3

ex − 1

⇒ p =
9NT 4γ

T 3DV
D

(
TD

T

)



The high temperature approximation (T ≫ TD):

D

(
TD

T

)

=

∫ TD
T

0

dx
x3

ex − 1 =
∫ TD

T

0

dx
x3

1 + x− 1

=

[
x3

3

]TD
T

0

=
T 3D
3T 3

⇒ p =
9NT 4γ

T 3DV

T 3D
3T 3
=
3NTγ

V

The low temperature approximation (T ≪ TD):

D

(
TD

T

)

= B3(0) = Γ(4)ζ(4) =
π4

15

⇒ p =
3NT 4γπ4

5T 3DV

Now I will compute the heat capacity and ∂p

∂T
and compare the results.

∂F

∂T
= 3N ln

(

1− e−
TD
T

)

− 3NT 1

e
TD
T − 1

TD

T 2

−12NT
3

T 3D
D

(
TD

T

)

− 3NT
4

T 3D

T 3D
T 3

1

e
TD
T − 1

TD

T 2

= 3N ln
(

1− e−
TD
T

)

− 12NT
3

T 3D
D

(
TD

T

)

⇒ cV = T




3NTD

T 2
(

e
TD
T − 1

) +
36NT 2

T 3D
D

(
TD

T

)

− 12NT
3

T 3D

T 4D

T 5
(

e
TD
T − 1

)





=
36NT 3

T 3D
D

(
TD

T

)

− 9NTD

T
(

e
TD
T − 1

)

∂p

∂T
=
36NT 3γ

V T 3D
D

(
TD

T

)

− 9NT
4γ

V T 3D

T 4D

T 5
(

e
TD
T − 1

)

⇒ ∂p

∂T
=

γcV

V

The results are as expected and then the coefficient of thermal expansion is
related to γ by equation α = κγcV

V
.
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Problem 9: Assume the existence of a Bose gas with dispresion relation
E = A |k|n where n is any natural number. If the number of particles is not
conserved, comptute the dependence of the specific heat cV on the temperature
T .
As was derived in problem 3, the Landau potential for quantum Bose gas

has formula

Ω = T

∞∑

i=1

ln
(

1− e−
ǫi−µ

T

)

= T

∫

1stoctant

d3k
V

π3
ln
(

1− e−Akn−µ
T

)

=
TV

π3

∫

dkk2
π

2
ln
(

1− e−Akn−µ
T

)

=
TV

2π2

∫

dkk2 ln
(

1− e−Akn−µ
T

)

∣
∣E = Akn ⇒ dE = nAkn−1dk

=
TV

2π2

∫

dE
1

nAE
n−1

n

A
n−1

n

E
2
n

A
2
n

ln
(

1− e−E−µ
T

)

=
TV

2nπ2A
3
n

∫

dEE
3−n

n ln
(

1− e−E−µ
T

)

∣
∣
∣
∣
x =

E

T
⇒ dx = 1

T
dE

=
TV

2nπ2A
3
n

∫

TdxT
3−n

n x
3−n

n ln
(

1− e−x+ µ
T

)

=
V T

n+3
n

2nπ2A
3
n

∫

dxx
3−n

n ln
(
1−Ke−x

)

∣
∣
∣
∣
u = ln

(
1−Ke−x

)
⇒ u′ =

1

K−1ex − 1
∣
∣
∣v′ = x

3−n
n ⇒ v =

n

3
x
3
n

=
V T

n+3
n

2nπ2A
3
n

([

nx
3
n

3
ln
(
1−Ke−x

)

]∞

0

− n

3

∫

dx
x
3
n

ex−
µ
T − 1

)

=
V T

n+3
n

6π2A
3
n

B 3
n

(µ

T

)



⇒ S = −(n + 3)V T
3
n

6nπ2A
3
n

B 3
n

(µ

T

)

+
V µT

3−n
n

2nπ2A
3
n

B 3−n
n

(µ

T

)

⇒ cV,µ = T

(

−3 (n+ 3)V T
3−n

n

6n2π2A
3
n

B 3
n

(µ

T

)

+
(n + 3)µV T

3−2n
n

2n2π2A
3
n

B 3−n
n

(µ

T

)
)

+T

(

(3− n)µV T
3−2n

n

2n2π2A
3
n

B 3−n
n

(µ

T

)

− (3− n)µ2V T
3−3n

n

2n2π2A
3
n

B 3−2n
n

(µ

T

)
)

=
V

2n2π2A
3
n

(

− (n + 3)T 3
nB 3

n

(µ

T

)

+ 6µT
3−n

n B 3−n
n

(µ

T

)

− (3− n)µ2T
3−2n

n B 3−2n
n

(µ

T

))
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Problem 10: Assume that we have a classical ideal gas where the particles
also carry an internal degree of freedom. So apart from carrying kinetic energy
p2

2m
they also carry internal energy ±∆. Show how one can measure delta by

measuring the heat capacity.
The partition function for classical ideal das is

Z =
∑

r

e−
Er−µNr

T

=
∞∑

N=0

e
µN
T e−

EN
T

=

∞∑

N=0

e
µN
T
1

N !

N∏

i=1

∫

d3pd3x
1

8π3~3
e−

p2

2mT
±∆

T

=
∞∑

N=0

(

e
µ±∆

T

)N V N

N !8Nπ3N~3N

(
N∏

i=1

∫

dpe−
p2

2mT

)3

=

∞∑

N=0

(

e
µ±∆

T

)N V N

N !8Nπ3N~3N

(
N∏

i=1

∫

dpe−
p2

2mT

)3

=

∞∑

N=0

(

e
µ±∆

T

)N V N (2πmT )
3N
2

N !8Nπ3N~3N

=

∞∑

N=0

1

N !

(

e
µ±∆

T
Vm

3
2T

3
2

2
5
2π

5
2~3

)N

= e
e

µ±∆
T V m

3
2 T
3
2

2
5
2 π
5
2 ~3

⇒ Ω = −T eµ±∆
T
Vm

3
2T

3
2

2
5
2π

5
2~3

= −eµ±∆
T αV T

5
2

The coefficient α is constant. The total Landau potential is sum of po-
tential with +∆ and with −∆.

Ω = −αV T 5
2

(

e
µ+∆

T + e
µ−∆

T

)

= −αV T 5
2 e

µ
T

(

e
∆
T + e−

∆
T

)



= − 2αV
︸︷︷︸

K

T
5
2 e

µ
T cosh

∆

T

⇒ N = KT
3
2 e

µ
T cosh

∆

T

⇒ e µ
T =

N

KT
3
2 cosh ∆

T

⇒ µ = T ln
N

KT
3
2 cosh ∆

T

Now I can compute the entropy and add the expression for the chemical
potential. Finally I will derive the entropy and get the heat capacity and
compare the result to the classical result, which is 3

2
N .

S =
5

2
KT

3
2 e

µ
T cosh

∆

T
−KT

1
2µe

µ
T cosh

∆

T
−KT

1
2∆e

µ
T sinh

∆

T

= KT
3
2 e

µ
T cosh

∆

T

(
5

2
− µ

T
− ∆
T
tanh

∆

T

)

=
KT

3
2N cosh ∆

T

KT
3
2 cosh ∆

T

(

5

2
− ln N

KT
3
2 cosh ∆

T

− ∆
T
tanh

∆

T

)

= N

(
5

2
− ln N

K
+ lnT

3
2 + ln cosh

∆

T
− ∆
T
tanh

∆

T

)

⇒ cV = T

(

3N

2T
− N∆

T 2
tanh

∆

T
+
N∆

T 2
tanh

∆

T
+

N∆2

T 3 cosh2 ∆
T

)

=
3

2
N +

N∆2

T 2 cosh2 ∆
T

If the classical gas carry internal degree of freedom, the heat capacity will
increase by factor x2

cosh2 x
, where x = ∆

T
.
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Problem 11: Calculate the magnetic susceptibility of a free electron gas! In
a electron gas there are two competing effects that will decide how the induced
magnetic field will be when one applies an external magnetic field. The electrons
themselves carry spin to which there is a magnetic moment associated. The
magnetic moments tend to align with the magnetic field thus creating an induce
magnetic moment in the same direction as the applied magnetic field. This is
paramagnetic behavior. However, since the electrons are themselves charged they
will move in circles in the magnetic field which will create a current that tends
to reduce the applied external magnetic field. This is diamagnetic behavior. Cal-
culate the Landau potential for these two problems independently and calculate
the susceptibility χ it gives rise to according formula

M = −
(
∂Ω

∂H

)

T,V,µ

χ =
∂M

∂H
= − ∂2Ω

∂H2

Start from the formula for the Landau potential using the ideal gas approximation

Ω = −T
∑

a

ln
(

1 + e−
Ea−µ

T

)

In the paramagnetic case, the states have different energy according to if the
spin is up or down

Ea =
p2

2m
± βH

where β = |e|~
2mc
is the Bohr magneton and H is the external magnetic field. In the

diamagnetic case, as was shown in class, the sum over states can be exchanged
with

∑

a

→
∞∑

n=0

∫

dpz2
V

(2π~)2
|e|H
c

where the energy of the states is given by

E = ~ω

(

n+
1

2

)

+
p2z
2m



To get explicit results, use the high temperature approximation to lowest order
and use what you know for the free electron gas without a magnetic field. Is the
gas paramagnetic or diamagnetic?
I found that free electron gas is paramagnetic in the literature.
The Landau potential of free electron gas is

Ω = −T
∑

a

ln
(

1 + e−
Ea−µ

T

)

and energy of the states is given by equation

Ea =
p2

2m
± βH

I will integrate the Landau potential instead of summing.

Ω = −2T
∫

d3xd3p
1

8π3~3
ln
(

1 + e−
E−µ

T

)

= − TV

4π3~3

∫

dp4πp2 ln
(

1 + e−
E−µ

T

)

= − TV

π2~3

∫

dpp2 ln
(

1 + e−
E−µ

T

)

∣
∣
∣
∣
E =

p2

2m
⇒ dE = p

m
dp

= − TV

π2~3

∫

mdE2
1
2m

1
2E

1
2 ln

(

1 + e−
E±βH−µ

T

)

= −2
1
2TV m

3
2

π2~3

∫

dEE
1
2 ln

(

1 + e−
E±βH−µ

T

)

∣
∣
∣
∣
x =

E

T
⇒ dx = 1

T
dE

= −TC
∫

TdxT
1
2x

1
2 ln

(
1 +Ke−x

)

= −CT 5
2

∫

dxx
1
2 ln

(
1 +Ke−x

)

∣
∣
∣
∣
u = ln

(
1 +Ke−x

)
⇒ u′ =

−Ke−x

1 +Ke−x
= − 1

K−1ex + 1
∣
∣
∣
∣
v′ = x

1
2 ⇒ v =

2

3
x
3
2

= −CT 5
2

([

2x
3
2

3
ln
(
1 +Ke−x

)

]∞

0

+
2

3

∫

dx
x
3
2

ex−
µ±βH

T + 1

)



= −2
3
2T

5
2Vm

3
2

3π2~3
F 3
2

(
µ± βH

T

)

This is the Landau potential for free paramagnetic electron gas. The
susceptibility is defined for constant temperature, volume and chemical po-
tential, so I can derivate the potential twice and make the high temperature
approximation. But I will use another method.

Ω = −α
(

F 3
2

(
µ− βH

T

)

+ F 3
2

(
µ+ βH

T

))

F 3
2

(
µ− βH

T

)

=

∫ ∞

0

dx
x
3
2

ex−
µ−βH

T + 1

= T− 5
2

∫ ∞

0

dE
E
3
2

e
E−µ+βH

T + 1
∫ ∞

0

dE
E
3
2

e
E−µ+βH

T + 1
= T

∫ ∞

−µ−βH
T

dz
(µ− βH + zT )

3
2

ez + 1

= T

∫ 0

−µ−βH
T

dz
(µ− βH + zT )

3
2

ez + 1
+ T

∫ ∞

0

dz
(µ− βH + zT )

3
2

ez + 1

= T

∫ µ−βH
T

0

dz
(µ− βH − zT )

3
2

e−z + 1
+ T

∫ ∞

0

dz
(µ− βH + zT )

3
2

ez + 1

= T

∫ µ−βH
T

0

dz (µ− βH − zT )
3
2 − T

∫ µ−βH
T

0

dz
(µ− βH − zT )

3
2

e−z + 1

+T

∫ ∞

0

dz
(µ− βH + zT )

3
2

ez + 1

=

∫ µ−βH

0

dEE
3
2 + T

∫ ∞

0

dz
(µ− βH + zT )

3
2 − (µ− βH − zT )

3
2

ez + 1

=

∫ µ−βH

0

dEE
3
2 + 2T

∂f

∂ν

∫ ∞

0

dz
z

ez + 1
∣
∣
∣f = x

3
2 , ν = µ− βH

∣
∣
∣
∣

∫ ∞

0

dz
z

ez + 1
= F1(0) =

1

2
Γ(2)ζ(2) =

π2

12

=
2

5
(µ− βH)

5
2 +

π2T

4
(µ− βH)

1
2



Then I have

I1 + I2 =
2

5
(µ− βH)

5
2 +

π2T

4
(µ− βH)

1
2 +
2

5
(µ+ βH)

5
2 +

π2T

4
(µ+ βH)

1
2

∣
∣
∣
∣
(1± x)n = 1± nx+

(
n

2

)

x2 ± . . .

=
2

5
µ
5
2

((

1− βH

µ

) 5
2

+

(

1 +
βH

µ

) 5
2

)

+
π2µ

1
2T

4

((

1− βH

µ

) 1
2

+

(

1 +
βH

µ

) 1
2

)

=
2µ

5
2

5

(

1− 5βH
2µ
+
15β2H2

8µ2
+ 1 +

5βH

2µ
+
15β2H2

8µ2

)

+
π2µ

1
2T

4

(

1− βH

2µ
− β2H2

8µ2
+ 1 +

βH

2µ
− β2H2

8µ2

)

=
4µ

5
2

5
+
π2Tµ

1
2

2
+
3µ

1
2β2H2

2
− π2Tβ2H2

16µ
3
2

≈ 4

5
µ
5
2 +

π2Tµ
1
2

2
+
3µ

1
2β2H2

2

⇒ Ω = −αT− 5
2

(

4

5
µ
5
2 +

π2Tµ
1
2

2
+
3µ

1
2β2H2

2

)

= −αΩ0 −
3αµ

1
2β2H2

2T
5
2

⇒ M =
3αµ

1
2β2H

T
5
2

⇒ χ =
3αµ

1
2β2

T
5
2

=
3µ

1
2β2

T
5
2

2
3
2T

5
2V m

3
2

3π2~3
=
2
3
2µ

1
2β2V m

3
2

π2~3

This is the magnetic susceptibility for paramagnetic case of free electron
gas. Now I will compute the diamagnetic case.

Ω = −T
∞∑

n=0

V eH

2π2~2c2

∫

dpz ln

(

1 + e−
~ω(n+12)+

p2z
2m −µ

T

)

= −α
∞∑

n=0

∫

dpz ln

(

1 + e−
~ω(n+12)+

p2z
2m −µ

T

)

∫

dpz ln

(

1 +Ke−
p2z
2mT

)

=
m
1
2T

1
2

2
1
2

∫

dxx−
1
2 ln

(
1 +Ke−x

)



= (2mT )
1
2 F 1

2

(

µ− ~ω
(
n + 1

2

)

T

)

⇒ Ω = −eV HT
3
2m

1
2

2
1
2π2~2c2

∞∑

n=0

F 1
2

(

µ− ~ω
(
n + 1

2

)

T

)

I have to compute the infinite sum of fermion functions. I will use the
approximation to integral. Then for the infinite sum I have

∞∑

n=0

F 1
2

(

µ− ~ω
(
n+ 1

2

)

T

)

=
T

~ω

∫ ∞

0

dnF 1
2

(

µ− ~ω
(
n+ 1

2

)

T

)

= − 2T
3~ω

(

F 3
2

(
µ

T
− ~ω

2T

)

− F 3
2
(−∞)

)

= − 2T
3~ω

F 3
2

(
µ

T
− ~ω

2T

)

⇒ Ω =
2
1
2 eV HT

5
2m

1
2

3π2~3ωc2
F 3
2

(
µ

T
− ~ω

2T

)

= βF 3
2

(
µ

T
− ~ω

2T

)

In the paramagnetic case I had similar fermion function. The solution is
same.

F 3
2

(
µ− βH

T

)

= T− 5
2

(
2

5
(µ− βH)

5
2 +

π2T

4
(µ− βH)

1
2

)

⇒ F 3
2

(
µ

T
− ~ω

2T

)

= T− 5
2

(

2

5

(

µ− ~ω

2

) 5
2

+
π2T

4

(

µ− ~ω

2

) 1
2

)

= T− 5
2
2µ

5
2

5

(

1− 5~ω
4µ
+
15~2ω2

32µ2

)

+T− 5
2
π2Tµ

1
2

4

(

1− ~ω

4µ
− ~

2ω2

32µ2

)

=
2µ

5
2

5T
5
2

+
~ωµ

3
2

2T
5
2

+
π2µ

1
2

4T
3
2

+
3~2ω2µ

1
2

16T
5
2

From quantum mechanics I have ω = eH
m
. Then for Landau potential I

have

Ω =
2
1
2eV HT

5
2m

1
2

3π2~3ωc2

(

2µ
5
2

5T
5
2

+
~ωµ

3
2

2T
5
2

+
π2µ

1
2

4T
3
2

+
3~2ω2µ

1
2

16T
5
2

)



=
2
1
2V T

5
2m

3
2

3π2~3c2

(

2µ
5
2

5T
5
2

+
~eHµ

3
2

2mT
5
2

+
π2µ

1
2

4T
3
2

+
3~2e2H2µ

1
2

16m2T
5
2

)

⇒ M = −2
1
2V T

5
2m

3
2

3π2~3c2

(

~eµ
3
2

2mT
5
2

+
3~2e2Hµ

1
2

8m2T
5
2

)

⇒ χ = −2
1
2V T

5
2m

3
2

3π2~3c2
3~2e2µ

1
2

8m2T
5
2

= −V m
− 1
2 e2µ

1
2

2
5
2π2~c2

= −V µ
1
2m

3
2β2

2
1
2π2~3

The total susceptibility is then

χ =
2
3
2µ

1
2β2V m

3
2

π2~3
− V µ

1
2m

3
2β2

2
1
2π2~3

=
3Vm

3
2µ

1
2β

1
2

2
1
2π2~3

≥ 0

The free electron gas is paramagnetic.


