Fyzikální praktikum 3 - úloha 1

Studium činnosti fotonásobiče

Teorie: Úkolem tohoto praktika bylo, jak název napovídá, prostudovat chování fotonásobiče. Fotonásobič je elektro-optický přístroj používaný především pro měření nízkých světelných toků. Využívá dvou druhů elektronové emise, fotoemise a sekundární emise.

Fotoemise bývá nazývána též vnějším fotoefektem. Její podstatou je přeměna energie fotonu na výstupní práci a kinetickou energii elektronu. Platí pro ni několik zákonů, například Einsteinův zákon

$$h\nu = \omega + \frac{mv_0^2}{2},$$

kde $h\nu$ je energie fotonu a ω efektivní výstupní práce elektronů. Z toho vyplývá, že od určitých frekvencí platí, že elektrony z materiálu nezískávají potřebnou kinetickou energii. Z toho vyplývá další zákon, který říká, že rychlost elektronů z fotokatody nezávisí na intenzitě světla.

Dalším zákonem je zákon Stoletovův, který říká, že počet elektronů emitovaných za jednotku času je úměrný intenzitě dopadajícího světla. To ovšem platí za předpokladu, že spektrální složení světla je nezměněné. Můžeme tedy psát $I_f = k(\lambda)\Phi$.

Pokud urychlené elektrony dopadnou na další elektrodu, mohou, pokud mají dostatečnou energii, uvolnit další elektrony. Tyto nové elektrony se pak nazývají sekundární. Zavádí se pak "koeficient sekundární emise" $\sigma = \frac{I_{sek}}{I_{prim}}$.

Princip fotonásobiče:

Z obrázku by mohlo být zřejmé, jak fotonásobič pracuje. Po dopadu fotonu se vybudí elektron, který projde na další elektrodu (tzv. dynodu). Tam vybudí další elektrony atd. Pomocí Stoletovova zákona můžeme určit proud anodou ze vztahu $I_a = \sigma^n I_f$. Koeficient $\sigma^n = M$ nám udává celkové zesílení fotonásobiče. Dosazením předchozích vztahů získáme tedy $I_a = M k \Phi = S \phi$, kde S je integrální citlivost fotonásobiče. Obecně zesílení a integrální citlivost závisejí na anodovém napětí, čímž určují vlastnosti fotonásobiče.

I pokud není fotokatoda osvětlena, můžeme naměřit nějaký proud. Tento tzv. temný proud vzniká termoemisí z fotokatody a je možné jej potlačit lepším chlazením.

Na obrázku je schematický nákres aparatury použité v tomto praktiku. Většina dynod je zapojena trvale. Kvůli určení koeficientu sekundární emise je mezi dvěma katodami a napěťovým děličem mikroampérmetr.

Pro určitou hodnotu osvětlění fotokatody jsou odečítány proudy na anodě a 10. a 12. dynodě a napětí mezi fotokatodou a 14. dynodou. Z těchto údajů je možné zjistit všechny potřebné údaje, tedy závislost ln $\frac{\sigma}{V}$ na U_a , závislost integrální citlivosti a zesílení fotonásobiče na U_a a integrální citlivost fotokatody. Zároveň je možné ověřit vliv temného proudu na přesnost měření.

Klín č. 1: $\Phi = 0, 9 \cdot 10^{-4} (Lm)$										
U_a	I_a	I_{10}	I_{12}	σ	$V = \frac{U_a}{14}$	$ln \frac{\sigma}{V}$	M	S	I_f	k
(V)	(μA)	(μA)	(μA)		(V)	•		(ALm^{-1})	(pA)	(μALm^{-1})
600	59	1,11	$7,\!50$	2,6	$42,\!86$	-2,8	642936	$0,\!656$	$91,\!8$	1,02
594	50	1,04	6,78	2,55	42,43	-2,81	500466	$0,\!556$	$99,\!9$	1,11
540	28	$0,\!58$	3,22	2,36	$38,\!57$	-2,80	162553	0,311	$172,\!3$	1,91
582	40	0,90	$5,\!67$	2,51	$41,\!57$	-2,81	393898	0,444	101,5	1,13
510	20	0,38	1,85	2,21	$36,\!43$	-2,80	64821	0,222	308,5	3,43
480	11	$0,\!27$	1,10	2,02	$34,\!29$	-2,83	18630	$0,\!122$	590,5	6,56
624	71	1,31	9,05	$2,\!63$	$44,\!57$	-2,83	751001	0,789	$94,\!5$	1,05
642	85	1,54	11,3	2,71	45,86	-2,83	1145260	0,944	74,2	0,83
636	79	1,50	10,90	2,70	$45,\!43$	-2,82	1069909	$0,\!878$	$73,\!8$	0,82
654	89	1,60	12,40	2,78	46,71	-2,82	1679237	0,989	$53,\!0$	$0,\!59$

Vlastní měření: V následující tabulce jsou uvedeny naměřené a vypočtené hodnoty podle vzoru uvedeného v návodu.

Klín č. 2: $\Phi = 0,68 \cdot 10^{-4} (Lm)$										
U_a	I_a	I_{10}	I_{12}	σ	$V = \frac{U_a}{14}$	$\ln \frac{\sigma}{V}$	M	S	I_f	k
(V)	(μA)	(μA)	(μA)		(V)			(ALm^{-1})	(pA)	(μALm^{-1})
648	79	1,40	10,7	2,76	$46,\!29$	-2,82	1523317	$1,\!170$	52,2	0,77
654	88	1,47	10,9	2,72	46,71	-2,84	1232435	1,290	71,4	1,05
630	68	1,20	8,7	2,69	$45,\!00$	-2,82	1052849	1,000	64,6	0,95
618	60	$1,\!12$	7,8	2,64	44,14	-2,82	794577	$0,\!882$	$75,\!5$	1,11
606	51	1,00	6,6	2,57	$43,\!29$	-2,82	545516	0,750	93,5	1,37
582	39	0,88	4,8	2,34	$41,\!57$	-2,88	143651	$0,\!574$	271,5	3,99
564	31	$0,\!62$	3,5	2,38	40,29	-2,83	182698	$0,\!449$	166,9	2,46
522	20	0,40	2,0	2,24	$37,\!29$	-2,81	78125	0,294	256,0	3,76
432	10	0,10	0,4	1,90	30,86	-2,79	7836	$0,\!147$	1276,0	18,80
618	45	0,92	$5,\!90$	2,53	44,14	-2,86	446117	$0,\!654$	$99,\!8$	$1,\!47$
				Kl	ín č. 3: Φ	= 0, 52	$\cdot 10^{-4} (Lm)$	e)		
U_a	I_a	I_{10}	I_{12}	σ	$V = \frac{U_a}{14}$	$\ln \frac{\sigma}{V}$	M	S	I_f	k
(V)	(μA)	(μA)	(μA)		(V)			(ALm^{-1})	(pA)	(μALm^{-1})
666	88	1,52	11,7	2,77	$47,\!57$	-2,84	1601017	$1,\!690$	55,0	1,06
660	77	1,37	10,0	2,70	47,14	-2,86	1103967	1,480	69,8	1,34
648	71	1,26	9,0	2,67	$46,\!29$	-2,85	948645	1,360	74,3	1,43
630	60	1,09	7,5	2,62	$45,\!00$	-2,84	730202	$1,\!150$	82,2	1,58
618	50	0,94	6,2	2,57	44,14	-2,84	543059	0,962	92,1	1,77
594	40	0,79	4,8	2,46	42,43	-2,85	305702	0,769	130,8	2,52
570	30	$0,\!63$	3,7	2,42	40,71	-2,82	241006	0,577	124,5	2,36
540	21	0,41	2,1	2,26	$38,\!57$	-2,84	92480	$0,\!394$	221,7	4,26
438	10	0,11	0,4	1,91	31,29	-2,80	8408	0,192	1189,0	22,90
666	83	$1,\!50$	11,3	2,74	$47,\!57$	-2,85	1376925	$1,\!600$	60,3	1,16
				Klí	n č. 5: Φ	= 0,34	$\cdot 10^{-4} (Lm)$)		•
U_a	I_a	I_{10}	I_{12}	σ	$V = \frac{U_a}{14}$	$\ln \frac{\sigma}{V}$	M	S	I_f	k
(V)	(μA)	(μA)	(μA)		(V)			(ALm^{-1})	(pA)	(μALm^{-1})
684	90	$1,\!57$	12,2	2,79	48,86	-2,86	1710887	$2,\!65$	$52,\!6$	$1,\!55$
678	84	1,49	11,5	2,78	48,43	-2,86	1631477	$2,\!47$	51,5	1,51
660	77	1,34	$9,\!9$	2,72	47,14	-2,85	1201470	2,26	64,1	1,88
654	72	1,26	9,2	2,70	46,71	-2,85	1106422	$2,\!12$	65,1	1,91
642	65	1,16	8,2	2,66	$45,\!86$	-2,85	882046	1,91	73,7	$2,\!17$
630	58	1,09	7,4	2,61	45,00	-2,85	664717	1,71	87,3	$2,\!57$
618	51	0,97	6,4	2,57	44,14	-2,84	544324	1,50	93,7	2,76
600	40	0,80	5,1	2,52	42,86	-2,83	427919	1,16	92,3	2,71
570	31	0,62	$3,\!5$	2,38	40,71	-2,84	182698	0,91	169,7	4,99
540	21	0,42	2,1	2,24	38,57	-2,85	78125	0,62	268,8	7,91
504	16	0,26	1,2	2,15	36,00	-2,82	44612	$0,\!47$	358,6	10,50

Klín č. 7: $\Phi = 0, 21 \cdot 10^{-4} (Lm)$										
U_a	I_a	I_{10}	I_{12}	σ	$V = \frac{U_a}{14}$	$\ln \frac{\sigma}{V}$	M	S	I_f	k
(V)	(μA)	(μA)	(μA)		(V)			(ALm^{-1})	(pA)	(μALm^{-1})
684	89	1,52	12,0	2,81	48,86	-2,86	1911453	4,24	47	$2,\!22$
672	81	1,38	10,4	2,75	48,00	-2,86	1380638	3,86	59	2,79
660	75	1,26	9,3	2,72	47,14	-2,85	1193402	$3,\!57$	63	$2,\!99$
654	69	1,20	8,5	2,66	46,71	-2,87	894672	3,29	77	$3,\!67$
648	64	1,15	8,2	2,67	46,29	-2,85	937156	$3,\!05$	68	$3,\!25$
630	59	1,06	7,2	2,61	45,00	-2,85	667093	2,81	88	4,21
630	52	1,04	7,0	2,59	$45,\!00$	-2,85	625825	2,48	83	$3,\!96$
594	42	0,82	5,1	2,49	$42,\!43$	-2,83	359993	$2,\!00$	117	$5,\!56$
570	32	$0,\!63$	3,7	2,42	40,71	-2,82	241006	1,52	133	$6,\!32$
552	$\overline{27}$	0,56	3,0	2,31	39,43	-2,84	126629	1,29	213	10,20
528	22	0,42	2,1	2,24	37,71	-2,83	78125	1,05	282	13,40
498	16	0,28	1,3	2,15	35,57	-2,80	46505	0,76	344	16,40

Ověření vlivu temného proudu na přesnost měření:

Temný proud								
U_a	I_a	I_{10}	I_{12}					
(V)	(μA)	(μA)	(μA)					
642	5,5	0,01	0,08					

Je vidět, že vliv temného proudu je minimální, proto nebude na něho prováděna oprava.

Graf závislosti $\ln \frac{\sigma}{V}$ na U_a

Graf závislostiM na U_a

U = 630V								
$\Phi(\cdot 10^{-4}Lm)$	$I_{10}(\mu A)$	$I_{12}(\mu A)$	σ					
0,9	1,70	11,9	$2,\!65$					
0,68	1,49	10,3	2,63					
0,52	$1,\!35$	9,3	2,62					
0,42	1,29	8,9	$2,\!63$					
0,34	1,23	8,5	2,63					
0,27	1,14	7,8	2,62					
0,21	1,10	7,5	2,61					
0,16	1,04	7,2	$2,\!63$					

Ověření nezávislosti ko
eficientu sekundární emise σ na intenzitě osvětlení fotok
atody

Závěr: Z prvního grafu je vidět, že pro libovolnou hodnotu světelného toku je grafem nějaká konstanta. To by mohlo napovídat, že koeficient sekundární emise σ nebude záviset na světelném toku. Z tabulky, kde toto bylo zjišťováno, je vidět, že tomu tak opravdu je. Odchylka je v řádu 0,7%, což je velmi pěkné.

Pokud se podíváme přesněji, grafem není konstanta, ale rostoucí přímka, i když rostoucí velmi pomalu. To lze přičíst temnému proudu, který byl zanedbáván. I tak ale je shoda výsledků s teorií dobrá a možná by šlo chybu vysvětlit pomocí chyby měřících přístrojů.

Graf pro zesílení zhruba odpovídá teorii, kdy se předpokládá závislost typu $\sigma = AVe^{BV}$. Zesílení M je pak jen nějaká mocnina σ , v našem případě čtrnáctá. Je vidět, že zesílení je pro dané napětí zhruba stejné pro libovolný světelný tok, což jen potvrzuje teorii o nezávislosti σ na Φ .

Z posledního grafu je vidět, že pro zmenšující se světelný tok a zvyšující se anodové napětí se zvětšuje integrální citlivost fotonásobiče. To, že se citlivost zvětšuje se zvyšujícím se napětím, lze snadno vysvětlit tak, že elektrony jsou urychlovány větším potenciálem, tedy získávají větší energii, takže je větší pravděpodobnost doletu na další anodu.

Měření proběhlo v pořádku bez žádných problémů.