Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktiku 3

Zpracoval: Radek Žemlička Obor: F Ročník: II Semestr: IV Naměřeno: 2. dubna 2009 Testováno:

Úloha č. 5: Šířka pásu zakázaných energií v polovodičích

1. Teorie

Ś
ířka pásu zakázaných energií elektronu v látce E_g je
 jednou z charakteristik, podle které rozlišujeme látky na kovy, polovodiče a dielektrika. Elektron v libovolné pevné látce může nabývat pouze určitých hodnot. Dovolené hodnoty energie se shlukují do intervalů, kterým říkáme energiové pásy. Z hlediska rozdělení látek do výše zmíněných tří skupin nás zajímají pouze dva pásy s vysokými hodnotami energie. Je to tzv. valenční pás a vodivostní pás. Viz schéma na obrázku 1 .

Obrázek 1: Pásové schéma polovodiče. E_c je energie dna vodivostního pásu, E_v energie stropu valenčního pásu, E_f energie tzv. Fermiho hladiny a E_g šířka zakázaného pásu

Aby látka mohla vést proud, musí v ní mít některé elektrony možnost pohybovat se volně v pásu energií, ve kterém se zrovna nachází. Tuto možnost má pouze v případě, není-li daný pás bezezbytku zaplněn elektrony. (V každém pásu se totiž může vyskytovat pouze omezený počet elektronů). Dielektrika mají valenční pás zcela zaplněn. Vodivostní pás je sice neobsazen, ale "energiová" vzdálenost mezi těmito dvěma pásy (tedy šířka zakázaného pásu E_g) je natolik velká, že ji elektrony nemohou za běžných podmínek překonat. U kovů je naopak E_g nulová a elektrony mají dost volných stavů, aby se mohli pohybovat a podílet se na elektrické vodivosti. Konečně u polovodičů, je šířka zakázaného pásu nenulová, avšak dostatečně malá na to, aby mohlo docházet k přechodu elektronů z valenčního do vodivostního pásu.

U polovodičů existuje další typ vodivosti. Tím je například děrový, kdy se postupně zaplňují volná místa ve valenčním pásu elektrony ve smeru k nižšímu potenciálu. Šířku zakázaného pásu můžeme zjišťovat u polovodičů například na PN přechodu pomocí fotoelektrického jevu. V oblasti PN přechodu dochází k vytvoření prostorového náboje díky přesunům elektronů a děr. Vznikne tu tedy nenulové elektrické pole. Pokud dopadající fotony mají energii větší než šířka zakázaného pásu, elektrony mohou přecházet z valenčního do vodivostního pásu. Díky elektrickému poli se náboje rozdělují, čímž se ale mění prostorový náboj a také elektrické pole. Na PN přechodu se pak objevuje fotonapětí, které závisí na intenzitě záření. Záření o různých vlnových délkách se absorbuje v různé hloubce. Absorpce záření je popsána vztahem

$$I(x) = I_0 R e^{-ax} \tag{1}$$

kde I(x) je intenzita záření v hloubce x, R optická odrazivost, a α koeficient absorbce, který je závislý na na vlnové délce (s jejím růstem klesá).

2. Měření

2.1. Způsob měření

Měření bylo provedeno s křemíkovou a germaniovou fotodiodou. Na diodu dopadalo světlo ze žárovky rozkládané otočným hranolem. Napětí diody bylo měřeno voltmetrem. Vzhledem k použité optické soustavě byla vlnová délka určena polohou mikrometrického šroubu, jehož otáčením byl hranol nastavován. Měřena tedy byla poloha mikrometrického šroubu a napětí na diodě.

Šířka zakázaného pásu E_g se určuje z tzv. spektrální závislosti fotonapětí připadajícího na jeden foton $S(\lambda)$, s čímž rozumíme závislost podílu měřeného fotonapětí $U(\lambda)$ a počtu $N(\lambda)$ dopadajících fotonů na vlnové délce:

$$S(\lambda) = \frac{U(\lambda)}{N(\lambda)} \tag{2}$$

2.2. Naměřené hodnoty a jejich zpracování

Byla měřena závislost napětí U na poloze hranolu d. Polohu hranolu d je možné přepočítat na vlnovou délku, pomocí tabulky uvedené v návodu. Z této tabulky byl numericky (metodou interpolace spline – funkcemi) vypořítán následující interpolační polynom, který byl dále užíván, jako převodní vztah:

$$\lambda(d) = -1,20d^5 + 6.35d^4 - 1,34d^3 + 1,41d^2 - 7,34d + 1,54$$
(3)

Z další tabulky uvedené v návodu byl pomocí programu SciDavis numericky vytvořeny interpolační polynomy aproximující vztah pro závislost počtu dopadajících fotonů na vlnové délce:

$$N(\lambda) = \begin{cases} -5, 79 \cdot 10^{-9} \lambda^3 + 2, 42 \cdot 10^{-5} \lambda^2 - 2, 33 \cdot 10^{-2} \lambda + 6, 84, & \lambda \in (700, 1050) \\ 3, 41 \cdot 10^{-8} \lambda^3 - 1, 42 \cdot 10^{-4} \lambda^2 + 0, 19\lambda - 85, 3, & \lambda \in (1050, 1300) \\ 2, 49 \cdot 10^{-10} \lambda^3 - 2, 07 \cdot 10^{-6} \lambda^2 + 2, 60 \cdot 10^{-3} \lambda + 2, 83, & \lambda \in (1300, 2000) \end{cases}$$
(4)

d[mm]	U[mV]	$\lambda[nm]$	$N[10^{-16}]$	E[eV]	$S[10^{-18}V]$
9,85	0,090	2111,70	1,43	$0,\!59$	0,0627
9,98	0,095	2000,26	1,74	$0,\!62$	0,0546
10,03	0,100	$1957,\!67$	1,85	$0,\!63$	0,0539
10,06	$0,\!105$	$1932,\!20$	1,92	$0,\!64$	0,0546
10,14	0,110	1864,71	2,10	$0,\!67$	0,0525
10,16	$0,\!115$	1847,94	$2,\!14$	$0,\!67$	0,0538
10,20	$0,\!120$	1814,54	2,22	$0,\!68$	0,0541
10,21	$0,\!125$	1806,22	2,24	$0,\!69$	0,0558
10,22	$0,\!130$	1797, 91	2,26	$0,\!69$	0,0575
$10,\!23$	$0,\!135$	1789,62	2,28	$0,\!69$	0,0592
$10,\!25$	0,140	1773,07	2,32	0,70	0,0603
10,27	$0,\!145$	$1756,\!57$	2,36	0,71	0,0615
10,29	$0,\!150$	1740, 13	2,40	0,71	0,0625
$10,\!30$	$0,\!155$	$1731,\!94$	$2,\!42$	0,72	0,0641
10,31	0,160	1723,76	$2,\!44$	0,72	0,0657
10,32	$0,\!165$	$1715,\!59$	2,46	0,72	0,0672
10,33	$0,\!170$	1707,44	2,47	0,73	0,0687
$10,\!34$	$0,\!175$	1699,30	$2,\!49$	0,73	0,0702
10,35	$0,\!180$	1691, 18	2,51	0,73	0,0717
10,36	$0,\!185$	1683,08	2,53	0,74	0,0731
$10,\!37$	$0,\!190$	$1674,\!99$	$2,\!55$	0,74	0,0746
10,38	$0,\!195$	1666, 92	2,57	0,74	0,0760
$10,\!39$	0,200	$1658,\!87$	2,58	0,75	0,0774
$10,\!40$	0,205	$1650,\!84$	$2,\!60$	0,75	0,0788
$10,\!40$	$0,\!210$	$1650,\!84$	$2,\!60$	0,75	$0,\!0807$
$10,\!41$	$0,\!215$	$1642,\!82$	2,62	0,75	0,0821
$10,\!42$	$0,\!220$	$1634,\!82$	$2,\!64$	0,76	0,0835
$10,\!43$	$0,\!225$	$1626,\!84$	$2,\!65$	0,76	$0,\!0848$
$10,\!44$	$0,\!230$	$1618,\!87$	$2,\!67$	0,77	$0,\!0861$
$10,\!44$	$0,\!235$	$1618,\!87$	$2,\!67$	0,77	0,0880
$10,\!44$	$0,\!240$	$1618,\!87$	$2,\!67$	0,77	0,0899
$10,\!45$	$0,\!245$	$1610,\!93$	$2,\!69$	0,77	0,0912
$10,\!45$	$0,\!250$	$1610,\!93$	$2,\!69$	0,77	0,0930
$10,\!46$	$0,\!255$	$1603,\!00$	2,70	0,77	0,0943
$10,\!47$	0,260	$1595,\!10$	2,72	0,78	0,0956
$10,\!47$	0,265	$1595,\!10$	2,72	0,78	0,0974
$10,\!50$	0,265	$1571,\!50$	2,77	0,79	0,0957
$10,\!51$	0,265	$1563,\!67$	2,79	0,79	0,0951
$10,\!53$	0,260	$1548,\!08$	2,82	$0,\!80$	0,0923
$10,\!54$	$0,\!255$	$1540,\!31$	2,83	$0,\!81$	0,0900
$10,\!55$	$0,\!250$	$1532,\!57$	$2,\!85$	$0,\!81$	0,0877
$10,\!56$	$0,\!250$	$1524,\!85$	$2,\!86$	$0,\!81$	0,0873
$10,\!57$	$0,\!248$	$1517,\!15$	$2,\!88$	$0,\!82$	0,0861
$10,\!58$	$0,\!247$	$1513,\!30$	$2,\!89$	$0,\!82$	0,0856
$10,\!58$	$0,\!249$	1509,47	2,89	$0,\!82$	0,0860
$10,\!59$	$0,\!250$	$1501,\!81$	2,91	$0,\!83$	0,0859
$10,\!60$	0,252	$1497,\!99$	2,92	$0,\!83$	0,0864
10,60	0,252	1494,18	2,92	$0,\!83$	0,0862
10,61	0,253	1486,57	2,94	0,83	0,0861
10,62	0,257	1478,98	2,95	0,84	0,0870
$10,\!63$	0,260	1471,42	2,97	0,84	0,0876
$10,\!64$	0,262	$1463,\!87$	$2,\!98$	$0,\!85$	0,0879

2.2..1 Tabulky a grafy shrnující měření

d[mm]	U[mV]	$\lambda[nm]$	$N[10^{-16}]$	E[eV]	$S[10^{-18}V]$
$10,\!65$	0,263	$1456,\!36$	$3,\!00$	$0,\!85$	0,0878
$10,\!66$	0,264	$1448,\!87$	$3,\!01$	$0,\!86$	$0,\!0877$
$10,\!67$	0,262	$1441,\!40$	$3,\!02$	$0,\!86$	$0,\!0867$
$10,\!68$	0,261	$1433,\!95$	$3,\!04$	$0,\!86$	0,0860
$10,\!69$	0,260	$1426,\!54$	$3,\!05$	$0,\!87$	$0,\!0853$
10,70	$0,\!258$	$1419,\!14$	$3,\!06$	$0,\!87$	0,0842
10,72	$0,\!255$	$1404,\!43$	$3,\!09$	$0,\!88$	0,0826
10,76	$0,\!250$	$1375,\!32$	$3,\!14$	$0,\!90$	0,0797
10,78	$0,\!245$	$1360,\!93$	$3,\!16$	0,91	0,0775
$10,\!80$	$0,\!240$	$1346,\!65$	$3,\!19$	0,92	0,0753
$10,\!82$	$0,\!235$	$1332,\!48$	$3,\!21$	$0,\!93$	0,0732
$10,\!83$	$0,\!230$	$1325,\!44$	$3,\!22$	$0,\!94$	0,0714
$10,\!85$	$0,\!220$	$1311,\!44$	$3,\!24$	$0,\!95$	0,0679
$10,\!93$	$0,\!210$	$1256,\!64$	$3,\!11$	$0,\!99$	0,0676
$11,\!00$	0,200	$1210,\!33$	$2,\!89$	1,02	0,0691
$11,\!04$	$0,\!190$	$1184,\!60$	$2,\!81$	$1,\!05$	0,0677
$11,\!09$	$0,\!180$	$1153,\!20$	2,74	$1,\!08$	0,0658
$11,\!14$	$0,\!170$	1122,70	2,72	$1,\!10$	0,0626
$11,\!19$	0,160	$1093,\!12$	2,74	$1,\!13$	0,0583
$11,\!25$	$0,\!150$	$1058,\!88$	$2,\!84$	$1,\!17$	0,0528
$11,\!33$	$0,\!130$	$1015,\!47$	$2,\!21$	$1,\!22$	0,0589
$11,\!58$	$0,\!110$	$897,\!69$	$1,\!35$	$1,\!38$	0,0813

Tabulka 1: Tabulka hodnot pro křemík

d[mm]	U[mV]	$\lambda[nm]$	$N[10^{-16}]$	E[eV]	$S[10^{-18}V]$
$9,\!88$	0,01	$2085,\!91$	$1,\!51$	$0,\!59$	0,0664
$9,\!95$	$0,\!10$	$2025,\!9$	$1,\!67$	$0,\!61$	$0,\!5981$
$10,\!00$	$0,\!20$	1983,2	1,79	$0,\!63$	$1,\!1192$
$10,\!03$	$0,\!30$	$1957,\!67$	$1,\!85$	$0,\!63$	$1,\!6173$
$10,\!60$	$0,\!40$	$1494,\!18$	$2,\!92$	$0,\!83$	1,3680
$10,\!80$	0,50	$1346,\!65$	$3,\!19$	0,92	1,5696
$10,\!10$	$0,\!60$	$1898,\!38$	2,01	$0,\!65$	$2,\!9860$
$10,\!13$	0,70	$1873,\!11$	2,07	$0,\!66$	$3,\!3754$
$10,\!16$	$0,\!80$	$1847,\!94$	$2,\!14$	$0,\!67$	3,7433
$10,\!17$	0,81	$1839,\!57$	$2,\!16$	$0,\!67$	3,7534
$10,\!18$	0,82	$1831,\!22$	$2,\!18$	$0,\!68$	3,7636
$10,\!19$	0,83	$1822,\!87$	2,2	$0,\!68$	3,7738
$10,\!20$	$0,\!84$	$1814,\!54$	$2,\!22$	$0,\!68$	3,7615
$10,\!21$	0,84	1806, 22	$2,\!24$	$0,\!69$	3,7496
$10,\!23$	0,84	$1789,\!62$	$2,\!28$	$0,\!69$	$3,\!6833$
$10,\!28$	0,83	$1748,\!35$	$2,\!38$	0,71	$3,\!4889$
$10,\!30$	0,82	$1731,\!94$	$2,\!42$	0,72	$3,\!3920$
$10,\!31$	0,81	1723,76	$2,\!44$	0,72	$3,\!3245$
$10,\!33$	$0,\!80$	$1707,\!44$	$2,\!47$	0,73	3,2336
$10,\!39$	0,70	$1658,\!87$	$2,\!58$	0,75	2,7096
$10,\!44$	$0,\!60$	$1618,\!87$	$2,\!67$	0,77	2,2467
$10,\!50$	0,50	$1571,\!5$	2,77	0,79	$1,\!8049$
$10,\!59$	$0,\!40$	$1501,\!81$	2,91	$0,\!83$	$1,\!3749$
10,71	$0,\!30$	$1411,\!77$	$3,\!08$	$0,\!88$	0,9754
$10,\!84$	0,20	$1318,\!42$	$3,\!23$	$0,\!94$	$0,\!6191$
$11,\!14$	$0,\!10$	1122,7	2,72	$1,\!10$	0,3681

Tabulka 2: Tabulka hodnot pro germanium

Obrázek 2: Graf závislosti fotonapětí na energii fotonu pro křemík

Obrázek 3: Graf závislosti fotonapětí na energii fotonu pro germanium

3. Závěr

Z grafů byly odečteny energie pro poloviční hodnoty z maximalní hodnoty S(E). Odtud získáváme šířku zakázaného pásu pro křemík: $E_g = 0,82eV$ a pro germanium: $E_g = 0,64eV$. Tabulkové hodnoty šířky zakázaného pásu jsou $E_g = 1,11eV$ pro křemík a $E_g = 0,67eV$ pro germanium. U germania se naše měření téměř přesně shoduje s tabulkovou hodnotou, u křemíku je odchylka způsobena pravděpodobně pouze nepřesností měření.